Plotting

 Ta, Kevin


Federated Discrete Denoising Diffusion Model for Molecular Generation with OpenFL

arXiv.org Artificial Intelligence

Generating unique molecules with biochemically desired properties to serve as viable drug candidates is a difficult task that requires specialized domain expertise. In recent years, diffusion models have shown promising results in accelerating the drug design process through AI-driven molecular generation. However, training these models requires massive amounts of data, which are often isolated in proprietary silos. OpenFL is a federated learning framework that enables privacy-preserving collaborative training across these decentralized data sites. In this work, we present a federated discrete denoising diffusion model that was trained using OpenFL. The federated model achieves comparable performance with a model trained on centralized data when evaluating the uniqueness and validity of the generated molecules. This demonstrates the utility of federated learning in the drug design process. OpenFL is available at: https://github.com/securefederatedai/openfl


UniCal: Unified Neural Sensor Calibration

arXiv.org Artificial Intelligence

Self-driving vehicles (SDVs) require accurate calibration of LiDARs and cameras to fuse sensor data accurately for autonomy. Traditional calibration methods typically leverage fiducials captured in a controlled and structured scene and compute correspondences to optimize over. These approaches are costly and require substantial infrastructure and operations, making it challenging to scale for vehicle fleets. In this work, we propose UniCal, a unified framework for effortlessly calibrating SDVs equipped with multiple LiDARs and cameras. Our approach is built upon a differentiable scene representation capable of rendering multi-view geometrically and photometrically consistent sensor observations. We jointly learn the sensor calibration and the underlying scene representation through differentiable volume rendering, utilizing outdoor sensor data without the need for specific calibration fiducials. This "drive-and-calibrate" approach significantly reduces costs and operational overhead compared to existing calibration systems, enabling efficient calibration for large SDV fleets at scale. To ensure geometric consistency across observations from different sensors, we introduce a novel surface alignment loss that combines feature-based registration with neural rendering. Comprehensive evaluations on multiple datasets demonstrate that UniCal outperforms or matches the accuracy of existing calibration approaches while being more efficient, demonstrating the value of UniCal for scalable calibration.


L2E: Lasers to Events for 6-DoF Extrinsic Calibration of Lidars and Event Cameras

arXiv.org Artificial Intelligence

Abstract--As neuromorphic technology is maturing, its application to robotics and autonomous vehicle systems has become an area of active research. In particular, event cameras have emerged as a compelling alternative to frame-based cameras in low-power and latency-demanding applications. To enable event cameras to operate alongside staple sensors like lidar in perception tasks, we propose a direct, temporally-decoupled extrinsic calibration method between event cameras and lidars. The high dynamic range, high temporal resolution, and low-latency operation of event cameras are exploited to directly register lidar laser returns, allowing information-based correlation methods to optimize for the 6-DoF extrinsic calibration between the two sensors. This paper presents the first direct calibration method between event cameras and lidars, removing dependencies on frame-based camera intermediaries and/or highly-accurate hand measurements.