Goto

Collaborating Authors

 Szepesvári, Csaba


Efron-Stein PAC-Bayesian Inequalities

arXiv.org Machine Learning

We prove semi-empirical concentration inequalities for random variables which are given as possibly nonlinear functions of independent random variables. These inequalities characterize the concentration of the random variable in terms of the data/distribution-dependent Efron-Stein (ES) estimate of its variance and they do not require any additional assumptions on the moments. In particular, this allows us to state semi-empirical Bernstein inequalities for general functions of unbounded random variables, which gives user-friendly concentration bounds for cases where related methods (entropy method / bounded differences) might be more challenging to apply. We extend these results to Efron-Stein PAC-Bayesian inequalities which hold for arbitrary probability kernels that define a random, data-dependent choice of the function of interest. Finally, we demonstrate a number of applications, including PAC-Bayesian generalization bounds for unbounded loss functions, empirical Bernstein-type generalization bounds, new truncation-free bounds for off-policy evaluation with Weighted Importance Sampling (WIS), and off-policy PAC-Bayesian learning with WIS.


Online Learning to Rank with Features

arXiv.org Machine Learning

We introduce a new model for online ranking in which the click probability factors into an examination and attractiveness function and the attractiveness function is a linear function of a feature vector and an unknown parameter. Only relatively mild assumptions are made on the examination function. A novel algorithm for this setup is analysed, showing that the dependence on the number of items is replaced by a dependence on the dimension, allowing the new algorithm to handle a large number of items. When reduced to the orthogonal case, the regret of the algorithm improves on the state-of-the-art.


Detecting Overfitting via Adversarial Examples

arXiv.org Machine Learning

The repeated reuse of test sets in popular benchmark problems raises doubts about the credibility of reported test error rates. Verifying whether a learned model is overfitted to a test set is challenging as independent test sets drawn from the same data distribution are usually unavailable, while other test sets may introduce a distribution shift. We propose a new hypothesis test that uses only the original test data to detect overfitting. It utilizes a new unbiased error estimate that is based on adversarial examples generated from the test data and importance weighting. Overfitting is detected if this error estimate is sufficiently different from the original test error rate. The power of the method is illustrated using Monte Carlo simulations on a synthetic problem. We develop a specialized variant of our dependence detector for multiclass image classification, and apply it to testing overfitting of recent models to two popular real-world image classification benchmarks. In the case of ImageNet, our method was not able to detect overfitting to the test set for a state-of-the-art classifier, while on CIFAR-10 we found strong evidence of overfitting for the two recent model architectures we considered, and weak evidence of overfitting on the level of individual training runs.


Distribution-Dependent Analysis of Gibbs-ERM Principle

arXiv.org Machine Learning

Gibbs-ERM learning is a natural idealized model of learning with stochastic optimization algorithms (such as Stochastic Gradient Langevin Dynamics and ---to some extent--- Stochastic Gradient Descent), while it also arises in other contexts, including PAC-Bayesian theory, and sampling mechanisms. In this work we study the excess risk suffered by a Gibbs-ERM learner that uses non-convex, regularized empirical risk with the goal to understand the interplay between the data-generating distribution and learning in large hypothesis spaces. Our main results are distribution-dependent upper bounds on several notions of excess risk. We show that, in all cases, the distribution-dependent excess risk is essentially controlled by the effective dimension $\mathrm{tr}\left(\boldsymbol{H}^{\star} (\boldsymbol{H}^{\star} + \lambda \boldsymbol{I})^{-1}\right)$ of the problem, where $\boldsymbol{H}^{\star}$ is the Hessian matrix of the risk at a local minimum. This is a well-established notion of effective dimension appearing in several previous works, including the analyses of SGD and ridge regression, but ours is the first work that brings this dimension to the analysis of learning using Gibbs densities. The distribution-dependent view we advocate here improves upon earlier results of Raginsky et al. (2017), and can yield much tighter bounds depending on the interplay between the data-generating distribution and the loss function. The first part of our analysis focuses on the localized excess risk in the vicinity of a fixed local minimizer. This result is then extended to bounds on the global excess risk, by characterizing probabilities of local minima (and their complement) under Gibbs densities, a results which might be of independent interest.


Online Algorithm for Unsupervised Sensor Selection

arXiv.org Machine Learning

In many security and healthcare systems, the detection and diagnosis systems use a sequence of sensors/tests. Each test outputs a prediction of the latent state and carries an inherent cost. However, the correctness of the predictions cannot be evaluated since the ground truth annotations may not be available. Our objective is to learn strategies for selecting a test that gives the best tradeoff between accuracy and costs in such unsupervised sensor selection (USS) problems. Clearly, learning is feasible only if ground truth can be inferred (explicitly or implicitly) from the problem structure. It is observed that this happens if the problem satisfies the'Weak Dominance' (WD) property [1]. We set up the USS problem as a stochastic partial monitoring problem and develop an algorithm with sub-linear regret under the WD property. We argue that our algorithm is optimal and evaluate its performance on problem instances generated from synthetic and real-world datasets.


LeapsAndBounds: A Method for Approximately Optimal Algorithm Configuration

arXiv.org Artificial Intelligence

We consider the problem of configuring general-purpose solvers to run efficiently on problem instances drawn from an unknown distribution. The goal of the configurator is to find a configuration that runs fast on average on most instances, and do so with the least amount of total work. It can run a chosen solver on a random instance until the solver finishes or a timeout is reached. We propose LeapsAndBounds, an algorithm that tests configurations on randomly selected problem instances for longer and longer time. We prove that the capped expected runtime of the configuration returned by LeapsAndBounds is close to the optimal expected runtime, while our algorithm's running time is near-optimal. Our results show that LeapsAndBounds is more efficient than the recent algorithm of Kleinberg et al. (2017), which, to our knowledge, is the only other algorithm configuration method with non-trivial theoretical guarantees. Experimental results on configuring a public SAT solver on a new benchmark dataset also stand witness to the superiority of our method.


Linear Stochastic Approximation: Constant Step-Size and Iterate Averaging

arXiv.org Machine Learning

We consider $d$-dimensional linear stochastic approximation algorithms (LSAs) with a constant step-size and the so called Polyak-Ruppert (PR) averaging of iterates. LSAs are widely applied in machine learning and reinforcement learning (RL), where the aim is to compute an appropriate $\theta_{*} \in \mathbb{R}^d$ (that is an optimum or a fixed point) using noisy data and $O(d)$ updates per iteration. In this paper, we are motivated by the problem (in RL) of policy evaluation from experience replay using the \emph{temporal difference} (TD) class of learning algorithms that are also LSAs. For LSAs with a constant step-size, and PR averaging, we provide bounds for the mean squared error (MSE) after $t$ iterations. We assume that data is \iid with finite variance (underlying distribution being $P$) and that the expected dynamics is Hurwitz. For a given LSA with PR averaging, and data distribution $P$ satisfying the said assumptions, we show that there exists a range of constant step-sizes such that its MSE decays as $O(\frac{1}{t})$. We examine the conditions under which a constant step-size can be chosen uniformly for a class of data distributions $\mathcal{P}$, and show that not all data distributions `admit' such a uniform constant step-size. We also suggest a heuristic step-size tuning algorithm to choose a constant step-size of a given LSA for a given data distribution $P$. We compare our results with related work and also discuss the implication of our results in the context of TD algorithms that are LSAs.


A Modular Analysis of Adaptive (Non-)Convex Optimization: Optimism, Composite Objectives, and Variational Bounds

arXiv.org Machine Learning

Recently, much work has been done on extending the scope of online learning and incremental stochastic optimization algorithms. In this paper we contribute to this effort in two ways: First, based on a new regret decomposition and a generalization of Bregman divergences, we provide a self-contained, modular analysis of the two workhorses of online learning: (general) adaptive versions of Mirror Descent (MD) and the Follow-the-Regularized-Leader (FTRL) algorithms. The analysis is done with extra care so as not to introduce assumptions not needed in the proofs and allows to combine, in a straightforward way, different algorithmic ideas (e.g., adaptivity, optimism, implicit updates) and learning settings (e.g., strongly convex or composite objectives). This way we are able to reprove, extend and refine a large body of the literature, while keeping the proofs concise. The second contribution is a byproduct of this careful analysis: We present algorithms with improved variational bounds for smooth, composite objectives, including a new family of optimistic MD algorithms with only one projection step per round. Furthermore, we provide a simple extension of adaptive regret bounds to practically relevant non-convex problem settings with essentially no extra effort.


Mixing time estimation in reversible Markov chains from a single sample path

arXiv.org Machine Learning

The spectral gap $\gamma$ of a finite, ergodic, and reversible Markov chain is an important parameter measuring the asymptotic rate of convergence. In applications, the transition matrix $P$ may be unknown, yet one sample of the chain up to a fixed time $n$ may be observed. We consider here the problem of estimating $\gamma$ from this data. Let $\pi$ be the stationary distribution of $P$, and $\pi_\star = \min_x \pi(x)$. We show that if $n = \tilde{O}\bigl(\frac{1}{\gamma \pi_\star}\bigr)$, then $\gamma$ can be estimated to within multiplicative constants with high probability. When $\pi$ is uniform on $d$ states, this matches (up to logarithmic correction) a lower bound of $\tilde{\Omega}\bigl(\frac{d}{\gamma}\bigr)$ steps required for precise estimation of $\gamma$. Moreover, we provide the first procedure for computing a fully data-dependent interval, from a single finite-length trajectory of the chain, that traps the mixing time $t_{\text{mix}}$ of the chain at a prescribed confidence level. The interval does not require the knowledge of any parameters of the chain. This stands in contrast to previous approaches, which either only provide point estimates, or require a reset mechanism, or additional prior knowledge. The interval is constructed around the relaxation time $t_{\text{relax}} = 1/\gamma$, which is strongly related to the mixing time, and the width of the interval converges to zero roughly at a $1/\sqrt{n}$ rate, where $n$ is the length of the sample path.


Bernoulli Rank-$1$ Bandits for Click Feedback

arXiv.org Machine Learning

The probability that a user will click a search result depends both on its relevance and its position on the results page. The position based model explains this behavior by ascribing to every item an attraction probability, and to every position an examination probability. To be clicked, a result must be both attractive and examined. The probabilities of an item-position pair being clicked thus form the entries of a rank-$1$ matrix. We propose the learning problem of a Bernoulli rank-$1$ bandit where at each step, the learning agent chooses a pair of row and column arms, and receives the product of their Bernoulli-distributed values as a reward. This is a special case of the stochastic rank-$1$ bandit problem considered in recent work that proposed an elimination based algorithm Rank1Elim, and showed that Rank1Elim's regret scales linearly with the number of rows and columns on "benign" instances. These are the instances where the minimum of the average row and column rewards $\mu$ is bounded away from zero. The issue with Rank1Elim is that it fails to be competitive with straightforward bandit strategies as $\mu \rightarrow 0$. In this paper we propose Rank1ElimKL which simply replaces the (crude) confidence intervals of Rank1Elim with confidence intervals based on Kullback-Leibler (KL) divergences, and with the help of a novel result concerning the scaling of KL divergences we prove that with this change, our algorithm will be competitive no matter the value of $\mu$. Experiments with synthetic data confirm that on benign instances the performance of Rank1ElimKL is significantly better than that of even Rank1Elim, while experiments with models derived from real data confirm that the improvements are significant across the board, regardless of whether the data is benign or not.