Plotting

 Swayamdipta, Swabha


Closing the Curious Case of Neural Text Degeneration

arXiv.org Artificial Intelligence

Despite their ubiquity in language generation, it remains unknown why truncation sampling heuristics like nucleus sampling are so effective. We provide a theoretical explanation for the effectiveness of the truncation sampling by proving that truncation methods that discard tokens below some probability threshold (the most common type of truncation) can guarantee that all sampled tokens have nonzero true probability. However, thresholds are a coarse heuristic, and necessarily discard some tokens with nonzero true probability as well. In pursuit of a more precise sampling strategy, we show that we can leverage a known source of model errors, the softmax bottleneck, to prove that certain tokens have nonzero true probability, without relying on a threshold. Based on our findings, we develop an experimental truncation strategy and the present pilot studies demonstrating the promise of this type of algorithm. Our evaluations show that our method outperforms its threshold-based counterparts under automatic and human evaluation metrics for low-entropy (i.e., close to greedy) open-ended text generation. Our theoretical findings and pilot experiments provide both insight into why truncation sampling works, and make progress toward more expressive sampling algorithms that better surface the generative capabilities of large language models.


Does Video Summarization Require Videos? Quantifying the Effectiveness of Language in Video Summarization

arXiv.org Artificial Intelligence

Video summarization remains a huge challenge in computer vision due to the size of the input videos to be summarized. We propose an efficient, language-only video summarizer that achieves competitive accuracy with high data efficiency. Using only textual captions obtained via a zero-shot approach, we train a language transformer model and forego image representations. This method allows us to perform filtration amongst the representative text vectors and condense the sequence. With our approach, we gain explainability with natural language that comes easily for human interpretation and textual summaries of the videos. An ablation study that focuses on modality and data compression shows that leveraging text modality only effectively reduces input data processing while retaining comparable results.


COBRA Frames: Contextual Reasoning about Effects and Harms of Offensive Statements

arXiv.org Artificial Intelligence

Warning: This paper contains content that may be offensive or upsetting. Understanding the harms and offensiveness of statements requires reasoning about the social and situational context in which statements are made. For example, the utterance "your English is very good" may implicitly signal an insult when uttered by a white man to a non-white colleague, but uttered by an ESL teacher to their student would be interpreted as a genuine compliment. Such contextual factors have been largely ignored by previous approaches to toxic language detection. We introduce COBRA frames, the first context-aware formalism for explaining the intents, reactions, and harms of offensive or biased statements grounded in their social and situational context. We create COBRACORPUS, a dataset of 33k potentially offensive statements paired with machine-generated contexts and free-text explanations of offensiveness, implied biases, speaker intents, and listener reactions. To study the contextual dynamics of offensiveness, we train models to generate COBRA explanations, with and without access to the context. We find that explanations by context-agnostic models are significantly worse than by context-aware ones, especially in situations where the context inverts the statement's offensiveness (29% accuracy drop). Our work highlights the importance and feasibility of contextualized NLP by modeling social factors.


REV: Information-Theoretic Evaluation of Free-Text Rationales

arXiv.org Artificial Intelligence

Generating free-text rationales is a promising step towards explainable NLP, yet evaluating such rationales remains a challenge. Existing metrics have mostly focused on measuring the association between the rationale and a given label. We argue that an ideal metric should focus on the new information uniquely provided in the rationale that is otherwise not provided in the input or the label. We investigate this research problem from an information-theoretic perspective using conditional V-information (Hewitt et al., 2021). More concretely, we propose a metric called REV (Rationale Evaluation with conditional V-information), to quantify the amount of new, label-relevant information in a rationale beyond the information already available in the input or the label. Experiments across four benchmarks with reasoning tasks, including chain-of-thought, demonstrate the effectiveness of REV in evaluating rationale-label pairs, compared to existing metrics. We further demonstrate REV is consistent with human judgments on rationale evaluations and provides more sensitive measurements of new information in free-text rationales. When used alongside traditional performance metrics, REV provides deeper insights into models' reasoning and prediction processes.


I2D2: Inductive Knowledge Distillation with NeuroLogic and Self-Imitation

arXiv.org Artificial Intelligence

Commonsense capabilities of pre-trained language models dramatically improve with scale, leading many to believe that scale is the only winning recipe. But is it? Here, we investigate an alternative that a priori seems impossible: can smaller language models (e.g., GPT-2) win over models that are orders of magnitude larger and better (e.g., GPT-3), if powered with novel commonsense distillation algorithms? The key intellectual challenge is to design a learning algorithm that achieve a competitive level of commonsense acquisition, without relying on the benefits of scale. In particular, we study generative models of commonsense knowledge, focusing on the task of generating generics, statements of commonsense facts about everyday concepts, e.g., birds can fly. We introduce I2D2, a novel commonsense distillation framework that loosely follows the Symbolic Knowledge Distillation of West et al. but breaks the dependence on the extreme-scale teacher model with two innovations: (1) the novel adaptation of NeuroLogic Decoding to enhance the generation quality of the weak, off-the-shelf language models, and (2) self-imitation learning to iteratively learn from the model's own enhanced commonsense acquisition capabilities. Empirical results suggest that scale is not the only way, as novel algorithms can be a promising alternative. Moreover, our study leads to a new corpus of generics, Gen-A-tomic, that is the largest and highest quality available to date.


Investigating the Benefits of Free-Form Rationales

arXiv.org Artificial Intelligence

Free-form rationales aim to aid model interpretability by supplying the background knowledge that can help understand model decisions. Crowdsourced rationales are provided for commonsense QA instances in popular datasets such as CoS-E and ECQA, but their utility remains under-investigated. We present human studies which show that ECQA rationales indeed provide additional background information to understand a decision, while over 88% of CoS-E rationales do not. Inspired by this finding, we ask: can the additional context provided by free-form rationales benefit models, similar to human users? We investigate the utility of rationales as an additional source of supervision, by varying the quantity and quality of rationales during training. After controlling for instances where rationales leak the correct answer while not providing additional background knowledge, we find that incorporating only 5% of rationales during training can boost model performance by 47.22% for CoS-E and 57.14% for ECQA during inference. Moreover, we also show that rationale quality matters: compared to crowdsourced rationales, T5-generated rationales provide not only weaker supervision to models, but are also not helpful for humans in aiding model interpretability.


Information-Theoretic Measures of Dataset Difficulty

arXiv.org Artificial Intelligence

Estimating the difficulty of a dataset typically involves comparing state-of-the-art models to humans; the bigger the performance gap, the harder the dataset is said to be. Not only is this framework informal, but it also provides little understanding of how difficult each instance is, or what attributes make it difficult for a given model. To address these problems, we propose an information-theoretic perspective, framing dataset difficulty as the absence of $\textit{usable information}$. Measuring usable information is as easy as measuring performance, but has certain theoretical advantages. While the latter only allows us to compare different models w.r.t the same dataset, the former also allows us to compare different datasets w.r.t the same model. We then introduce $\textit{pointwise}$ $\mathcal{V}-$$\textit{information}$ (PVI) for measuring the difficulty of individual instances, where instances with higher PVI are easier for model $\mathcal{V}$. By manipulating the input before measuring usable information, we can understand $\textit{why}$ a dataset is easy or difficult for a given model, which we use to discover annotation artefacts in widely-used benchmarks.


Contrastive Explanations for Model Interpretability

arXiv.org Artificial Intelligence

Contrastive explanations clarify why an event occurred in contrast to another. They are more inherently intuitive to humans to both produce and comprehend. We propose a methodology to produce contrastive explanations for classification models by modifying the representation to disregard non-contrastive information, and modifying model behavior to only be based on contrastive reasoning. Our method is based on projecting model representation to a latent space that captures only the features that are useful (to the model) to differentiate two potential decisions. We demonstrate the value of contrastive explanations by analyzing two different scenarios, using both high-level abstract concept attribution and low-level input token/span attribution, on two widely used text classification tasks. Specifically, we produce explanations for answering: for which label, and against which alternative label, is some aspect of the input useful? And which aspects of the input are useful for and against particular decisions? Overall, our findings shed light on the ability of label-contrastive explanations to provide a more accurate and finer-grained interpretability of a model's decision.


Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs

arXiv.org Artificial Intelligence

We present a transition-based parser that jointly produces syntactic and semantic dependencies. It learns a representation of the entire algorithm state, using stack long short-term memories. Our greedy inference algorithm has linear time, including feature extraction. On the CoNLL 2008--9 English shared tasks, we obtain the best published parsing performance among models that jointly learn syntax and semantics.


Annotation Artifacts in Natural Language Inference Data

arXiv.org Artificial Intelligence

Large-scale datasets for natural language inference are created by presenting crowd workers with a sentence (premise), and asking them to generate three new sentences (hypotheses) that it entails, contradicts, or is logically neutral with respect to. We show that, in a significant portion of such data, this protocol leaves clues that make it possible to identify the label by looking only at the hypothesis, without observing the premise. Specifically, we show that a simple text categorization model can correctly classify the hypothesis alone in about 67% of SNLI (Bowman et. al, 2015) and 53% of MultiNLI (Williams et. al, 2017). Our analysis reveals that specific linguistic phenomena such as negation and vagueness are highly correlated with certain inference classes. Our findings suggest that the success of natural language inference models to date has been overestimated, and that the task remains a hard open problem.