Sutskever, Ilya
Modelling Relational Data using Bayesian Clustered Tensor Factorization
Sutskever, Ilya, Tenenbaum, Joshua B., Salakhutdinov, Ruslan R.
We consider the problem of learning probabilistic models for complex relational structures between various types of objects. A model can help us "understand" a dataset of relational facts in at least two ways, by finding interpretable structure in the data, and by supporting predictions, or inferences about whether particular unobserved relations are likely to be true. Often there is a tradeoff between these two aims: cluster-based models yield more easily interpretable representations, while factorization-based approaches have given better predictive performance on large data sets. We introduce the Bayesian Clustered Tensor Factorization (BCTF) model, which embeds a factorized representation of relations in a nonparametric Bayesian clustering framework. Inference is fully Bayesian but scales well to large data sets. The model simultaneously discovers interpretable clusters and yields predictive performance that matches or beats previous probabilistic models for relational data.
The Recurrent Temporal Restricted Boltzmann Machine
Sutskever, Ilya, Hinton, Geoffrey E., Taylor, Graham W.
The Temporal Restricted Boltzmann Machine (TRBM) is a probabilistic model for sequences that is able to successfully model (i.e., generate nice-looking samples of) several very high dimensional sequences, such as motion capture data and the pixels of low resolution videos of balls bouncing in a box. The major disadvantage of the TRBM is that exact inference is extremely hard, since even computing a Gibbs update for a single variable of the posterior is exponentially expensive. This difficulty has necessitated the use of a heuristic inference procedure, that nonetheless was accurate enough for successful learning. In this paper we introduce the Recurrent TRBM, which is a very slight modification of the TRBM for which exact inference is very easy and exact gradient learning is almost tractable. We demonstrate that the RTRBM is better than an analogous TRBM at generating motion capture and videos of bouncing balls.