Goto

Collaborating Authors

 Sutskever, Ilya


Adding Gradient Noise Improves Learning for Very Deep Networks

arXiv.org Machine Learning

Deep feedforward and recurrent networks have achieved impressive results in many perception and language processing applications. This success is partially attributed to architectural innovations such as convolutional and long short-term memory networks. The main motivation for these architectural innovations is that they capture better domain knowledge, and importantly are easier to optimize than more basic architectures. Recently, more complex architectures such as Neural Turing Machines and Memory Networks have been proposed for tasks including question answering and general computation, creating a new set of optimization challenges. In this paper, we discuss a low-overhead and easy-to-implement technique of adding gradient noise which we find to be surprisingly effective when training these very deep architectures. The technique not only helps to avoid overfitting, but also can result in lower training loss. This method alone allows a fully-connected 20-layer deep network to be trained with standard gradient descent, even starting from a poor initialization. We see consistent improvements for many complex models, including a 72% relative reduction in error rate over a carefully-tuned baseline on a challenging question-answering task, and a doubling of the number of accurate binary multiplication models learned across 7,000 random restarts. We encourage further application of this technique to additional complex modern architectures.


Grammar as a Foreign Language

arXiv.org Machine Learning

Syntactic constituency parsing is a fundamental problem in natural language processing and has been the subject of intensive research and engineering for decades. As a result, the most accurate parsers are domain specific, complex, and inefficient. In this paper we show that the domain agnostic attention-enhanced sequence-to-sequence model achieves state-of-the-art results on the most widely used syntactic constituency parsing dataset, when trained on a large synthetic corpus that was annotated using existing parsers. It also matches the performance of standard parsers when trained only on a small human-annotated dataset, which shows that this model is highly data-efficient, in contrast to sequence-to-sequence models without the attention mechanism. Our parser is also fast, processing over a hundred sentences per second with an unoptimized CPU implementation.


Learning to Execute

arXiv.org Artificial Intelligence

Recurrent Neural Networks (RNNs) with Long Short-Term Memory units (LSTM) are widely used because they are expressive and are easy to train. Our interest lies in empirically evaluating the expressiveness and the learnability of LSTMs in the sequence-to-sequence regime by training them to evaluate short computer programs, a domain that has traditionally been seen as too complex for neural networks. We consider a simple class of programs that can be evaluated with a single left-to-right pass using constant memory. Our main result is that LSTMs can learn to map the character-level representations of such programs to their correct outputs. Notably, it was necessary to use curriculum learning, and while conventional curriculum learning proved ineffective, we developed a new variant of curriculum learning that improved our networks' performance in all experimental conditions. The improved curriculum had a dramatic impact on an addition problem, making it possible to train an LSTM to add two 9-digit numbers with 99% accuracy.


Sequence to Sequence Learning with Neural Networks

Neural Information Processing Systems

Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector. Our main result is that on an English to French translation task from the WMT-14 dataset, the translations produced by the LSTM achieve a BLEU score of 34.8 on the entire test set, where the LSTM's BLEU score was penalized on out-of-vocabulary words. Additionally, the LSTM did not have difficulty on long sentences. For comparison, a phrase-based SMT system achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM to rerank the 1000 hypotheses produced by the aforementioned SMT system, its BLEU score increases to 36.5, which is close to the previous state of the art. The LSTM also learned sensible phrase and sentence representations that are sensitive to word order and are relatively invariant to the active and the passive voice. Finally, we found that reversing the order of the words in all source sentences (but not target sentences) improved the LSTM's performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier.


Distributed Representations of Words and Phrases and their Compositionality

Neural Information Processing Systems

The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that capture a large number of precise syntactic and semantic word relationships. In this paper we present several improvements that make the Skip-gram model more expressive and enable it to learn higher quality vectors more rapidly. We show that by subsampling frequent words we obtain significant speedup, and also learn higher quality representations as measured by our tasks. We also introduce Negative Sampling, a simplified variant of Noise Contrastive Estimation (NCE) that learns more accurate vectors for frequent words compared to the hierarchical softmax. An inherent limitation of word representations is their indifference to word order and their inability to represent idiomatic phrases. For example, the meanings of Canada'' and "Air'' cannot be easily combined to obtain "Air Canada''. Motivated by this example, we present a simple and efficient method for finding phrases, and show that their vector representations can be accurately learned by the Skip-gram model. "


Distributed Representations of Words and Phrases and their Compositionality

arXiv.org Machine Learning

The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that capture a large number of precise syntactic and semantic word relationships. In this paper we present several extensions that improve both the quality of the vectors and the training speed. By subsampling of the frequent words we obtain significant speedup and also learn more regular word representations. We also describe a simple alternative to the hierarchical softmax called negative sampling. An inherent limitation of word representations is their indifference to word order and their inability to represent idiomatic phrases. For example, the meanings of "Canada" and "Air" cannot be easily combined to obtain "Air Canada". Motivated by this example, we present a simple method for finding phrases in text, and show that learning good vector representations for millions of phrases is possible.


Cardinality Restricted Boltzmann Machines

Neural Information Processing Systems

The Restricted Boltzmann Machine (RBM) is a popular density model that is also good for extracting features. A main source of tractability in RBM models is the model's assumption that given an input, hidden units activate independently from one another. Sparsity and competition in the hidden representation is believed to be beneficial, and while an RBM with competition among its hidden units would acquire some of the attractive properties of sparse coding, such constraints are not added due to the widespread belief that the resulting model would become intractable. In this work, we show how a dynamic programming algorithm developed in 1981 can be used to implement exact sparsity in the RBM's hidden units. We then expand on this and show how to pass derivatives through a layer of exact sparsity, which makes it possible to fine-tune a deep belief network (DBN) consisting of RBMs with sparse hidden layers. We show that sparsity in the RBM's hidden layer improves the performance of both the pre-trained representations and of the fine-tuned model.


ImageNet Classification with Deep Convolutional Neural Networks

Neural Information Processing Systems

We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes.On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster,we used non-saturating neurons and a very efficient GPU implementation ofthe convolution operation. To reduce overfitting in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.


Estimating the Hessian by Back-propagating Curvature

arXiv.org Machine Learning

In this work we develop Curvature Propagation (CP), a general technique for efficiently computing unbiased approximations of the Hessian of any function that is computed using a computational graph. At the cost of roughly two gradient evaluations, CP can give a rank-1 approximation of the whole Hessian, and can be repeatedly applied to give increasingly precise unbiased estimates of any or all of the entries of the Hessian. Of particular interest is the diagonal of the Hessian, for which no general approach is known to exist that is both efficient and accurate. We show in experiments that CP turns out to work well in practice, giving very accurate estimates of the Hessian of neural networks, for example, with a relatively small amount of work. We also apply CP to Score Matching, where a diagonal of a Hessian plays an integral role in the Score Matching objective, and where it is usually computed exactly using inefficient algorithms which do not scale to larger and more complex models.


Using matrices to model symbolic relationship

Neural Information Processing Systems

We describe a way of learning matrix representations of objects and relationships. The goal of learning is to allow multiplication of matrices to represent symbolic relationships between objects and symbolic relationships between relationships, which is the main novelty of the method. We demonstrate that this leads to excellent generalization in two different domains: modular arithmetic and family relationships. We show that the same system can learn first-order propositions such as $(2, 5) \member +\!3$ or $(Christopher, Penelope)\member has\_wife$, and higher-order propositions such as $(3, +\!3) \member plus$ and $(+\!3, -\!3) \member inverse$ or $(has\_husband, has\_wife)\in higher\_oppsex$. We further demonstrate that the system understands how higher-order propositions are related to first-order ones by showing that it can correctly answer questions about first-order propositions involving the relations $+\!3$ or $has\_wife$ even though it has not been trained on any first-order examples involving these relations.