Sun, Yifan
SVIP: Towards Verifiable Inference of Open-source Large Language Models
Sun, Yifan, Li, Yuhang, Zhang, Yue, Jin, Yuchen, Zhang, Huan
Open-source Large Language Models (LLMs) have recently demonstrated remarkable capabilities in natural language understanding and generation, leading to widespread adoption across various domains. However, their increasing model sizes render local deployment impractical for individual users, pushing many to rely on computing service providers for inference through a blackbox API. This reliance introduces a new risk: a computing provider may stealthily substitute the requested LLM with a smaller, less capable model without consent from users, thereby delivering inferior outputs while benefiting from cost savings. Existing verifiable computing solutions based on cryptographic or game-theoretic techniques are either computationally uneconomical or rest on strong assumptions. By training a proxy task on these outputs and requiring the computing provider to return both the generated text and the processed intermediate outputs, users can reliably verify whether the computing provider is acting honestly. In addition, the integration of a secret mechanism further enhances the security of our protocol. We thoroughly analyze our protocol under multiple strong and adaptive adversarial scenarios. In recent years, Large Language Models (LLMs) have achieved unprecedented success across a broad array of tasks and domains (Achiam et al., 2023; Dubey et al., 2024; Yang et al., 2024). Alongside this progress, open-source LLMs have proliferated, offering increasingly sophisticated and capable models to the broader research community (Touvron et al., 2023b; Black et al., 2022; Le Scao et al., 2023; Jiang et al., 2023; Almazrouei et al., 2023; Zhang et al., 2023). Many of these open-source LLMs now rival, or even surpass, their closed-source counterparts in performance (Chiang et al., 2023; Almazrouei et al., 2023; Dubey et al., 2024), while remaining freely accessible. However, as model capacity grows, it typically comes with a corresponding increase in the number of model parameters, which directly drives up the computational demands, particularly in terms of memory and processing power (Kukreja et al., 2024).
Iterative Methods via Locally Evolving Set Process
Zhou, Baojian, Sun, Yifan, Harikandeh, Reza Babanezhad, Guo, Xingzhi, Yang, Deqing, Xiao, Yanghua
Given the damping factor $\alpha$ and precision tolerance $\epsilon$, \citet{andersen2006local} introduced Approximate Personalized PageRank (APPR), the \textit{de facto local method} for approximating the PPR vector, with runtime bounded by $\Theta(1/(\alpha\epsilon))$ independent of the graph size. Recently, \citet{fountoulakis2022open} asked whether faster local algorithms could be developed using $\tilde{O}(1/(\sqrt{\alpha}\epsilon))$ operations. By noticing that APPR is a local variant of Gauss-Seidel, this paper explores the question of \textit{whether standard iterative solvers can be effectively localized}. We propose to use the \textit{locally evolving set process}, a novel framework to characterize the algorithm locality, and demonstrate that many standard solvers can be effectively localized. Let $\overline{\operatorname{vol}}{ (S_t)}$ and $\overline{\gamma}_{t}$ be the running average of volume and the residual ratio of active nodes $\textstyle S_{t}$ during the process. We show $\overline{\operatorname{vol}}{ (S_t)}/\overline{\gamma}_{t} \leq 1/\epsilon$ and prove APPR admits a new runtime bound $\tilde{O}(\overline{\operatorname{vol}}(S_t)/(\alpha\overline{\gamma}_{t}))$ mirroring the actual performance. Furthermore, when the geometric mean of residual reduction is $\Theta(\sqrt{\alpha})$, then there exists $c \in (0,2)$ such that the local Chebyshev method has runtime $\tilde{O}(\overline{\operatorname{vol}}(S_{t})/(\sqrt{\alpha}(2-c)))$ without the monotonicity assumption. Numerical results confirm the efficiency of this novel framework and show up to a hundredfold speedup over corresponding standard solvers on real-world graphs.
Independently-Normalized SGD for Generalized-Smooth Nonconvex Optimization
Yang, Yufeng, Tripp, Erin, Sun, Yifan, Zou, Shaofeng, Zhou, Yi
Recent studies have shown that many nonconvex machine learning problems meet a so-called generalized-smooth condition that extends beyond traditional smooth nonconvex optimization. However, the existing algorithms designed for generalized-smooth nonconvex optimization encounter significant limitations in both their design and convergence analysis. In this work, we first study deterministic generalized-smooth nonconvex optimization and analyze the convergence of normalized gradient descent under the generalized Polyak-Lojasiewicz condition. Our results provide a comprehensive understanding of the interplay between gradient normalization and function geometry. Then, for stochastic generalized-smooth nonconvex optimization, we propose an independently-normalized stochastic gradient descent algorithm, which leverages independent sampling, gradient normalization and clipping to achieve an $\mathcal{O}(\epsilon^{-4})$ sample complexity under relaxed assumptions. Experiments demonstrate the fast convergence of our algorithm.
Does RoBERTa Perform Better than BERT in Continual Learning: An Attention Sink Perspective
Bai, Xueying, Sun, Yifan, Balasubramanian, Niranjan
Continual learning (CL) aims to train models that can sequentially learn new tasks without forgetting previous tasks' knowledge. Although previous works observed that pre-training can benefit CL, it remains unclear whether a pre-trained model with higher downstream capacity also performs better in CL. In this paper, we observe that pre-trained models may allocate high attention scores to some 'sink' tokens, such as [SEP] tokens, which are ubiquitous across various tasks. Such attention sinks may lead to models' over-smoothing in single-task learning and interference in sequential tasks' learning, which may compromise the models' CL performance despite their high pre-trained capabilities. To reduce these effects, we propose a pre-scaling mechanism that encourages attention diversity across all tokens. Specifically, it first scales the task's attention to the non-sink tokens in a probing stage, and then fine-tunes the model with scaling. Experiments show that pre-scaling yields substantial improvements in CL without experience replay, or progressively storing parameters from previous tasks.
Absolute State-wise Constrained Policy Optimization: High-Probability State-wise Constraints Satisfaction
Zhao, Weiye, Li, Feihan, Sun, Yifan, Wang, Yujie, Chen, Rui, Wei, Tianhao, Liu, Changliu
Enforcing state-wise safety constraints is critical for the application of reinforcement learning (RL) in real-world problems, such as autonomous driving and robot manipulation. However, existing safe RL methods only enforce state-wise constraints in expectation or enforce hard state-wise constraints with strong assumptions. The former does not exclude the probability of safety violations, while the latter is impractical. Our insight is that although it is intractable to guarantee hard state-wise constraints in a model-free setting, we can enforce state-wise safety with high probability while excluding strong assumptions. To accomplish the goal, we propose Absolute State-wise Constrained Policy Optimization (ASCPO), a novel general-purpose policy search algorithm that guarantees high-probability state-wise constraint satisfaction for stochastic systems. We demonstrate the effectiveness of our approach by training neural network policies for extensive robot locomotion tasks, where the agent must adhere to various state-wise safety constraints. Our results show that ASCPO significantly outperforms existing methods in handling state-wise constraints across challenging continuous control tasks, highlighting its potential for real-world applications.
Dense Connector for MLLMs
Yao, Huanjin, Wu, Wenhao, Yang, Taojiannan, Song, YuXin, Zhang, Mengxi, Feng, Haocheng, Sun, Yifan, Li, Zhiheng, Ouyang, Wanli, Wang, Jingdong
Do we fully leverage the potential of visual encoder in Multimodal Large Language Models (MLLMs)? The recent outstanding performance of MLLMs in multimodal understanding has garnered broad attention from both academia and industry. In the current MLLM rat race, the focus seems to be predominantly on the linguistic side. We witness the rise of larger and higher-quality instruction datasets, as well as the involvement of larger-sized LLMs. Yet, scant attention has been directed towards the visual signals utilized by MLLMs, often assumed to be the final high-level features extracted by a frozen visual encoder. In this paper, we introduce the Dense Connector - a simple, effective, and plug-and-play vision-language connector that significantly enhances existing MLLMs by leveraging multi-layer visual features, with minimal additional computational overhead. Furthermore, our model, trained solely on images, showcases remarkable zero-shot capabilities in video understanding as well. Experimental results across various vision encoders, image resolutions, training dataset scales, varying sizes of LLMs (2.7B->70B), and diverse architectures of MLLMs (e.g., LLaVA and Mini-Gemini) validate the versatility and scalability of our approach, achieving state-of-the-art performance on across 19 image and video benchmarks. We hope that this work will provide valuable experience and serve as a basic module for future MLLM development.
Get more for less: Principled Data Selection for Warming Up Fine-Tuning in LLMs
Kang, Feiyang, Just, Hoang Anh, Sun, Yifan, Jahagirdar, Himanshu, Zhang, Yuanzhi, Du, Rongxing, Sahu, Anit Kumar, Jia, Ruoxi
This work focuses on leveraging and selecting from vast, unlabeled, open data to pre-fine-tune a pre-trained language model. The goal is to minimize the need for costly domain-specific data for subsequent fine-tuning while achieving desired performance levels. While many data selection algorithms have been designed for small-scale applications, rendering them unsuitable for our context, some emerging methods do cater to language data scales. However, they often prioritize data that aligns with the target distribution. While this strategy may be effective when training a model from scratch, it can yield limited results when the model has already been pre-trained on a different distribution. Differing from prior work, our key idea is to select data that nudges the pre-training distribution closer to the target distribution. We show the optimality of this approach for fine-tuning tasks under certain conditions. We demonstrate the efficacy of our methodology across a diverse array of tasks (NLU, NLG, zero-shot) with models up to 2.7B, showing that it consistently surpasses other selection methods. Moreover, our proposed method is significantly faster than existing techniques, scaling to millions of samples within a single GPU hour. Our code is open-sourced (Code repository: https://anonymous.4open.science/r/DV4LLM-D761/ ). While fine-tuning offers significant potential for enhancing performance across diverse tasks, its associated costs often limit its widespread adoption; with this work, we hope to lay the groundwork for cost-effective fine-tuning, making its benefits more accessible.
AnyPattern: Towards In-context Image Copy Detection
Wang, Wenhao, Sun, Yifan, Tan, Zhentao, Yang, Yi
This paper explores in-context learning for image copy detection (ICD), i.e., prompting an ICD model to identify replicated images with new tampering patterns without the need for additional training. The prompts (or the contexts) are from a small set of image-replica pairs that reflect the new patterns and are used at inference time. Such in-context ICD has good realistic value, because it requires no fine-tuning and thus facilitates fast reaction against the emergence of unseen patterns. To accommodate the "seen $\rightarrow$ unseen" generalization scenario, we construct the first large-scale pattern dataset named AnyPattern, which has the largest number of tamper patterns ($90$ for training and $10$ for testing) among all the existing ones. We benchmark AnyPattern with popular ICD methods and reveal that existing methods barely generalize to novel patterns. We further propose a simple in-context ICD method named ImageStacker. ImageStacker learns to select the most representative image-replica pairs and employs them as the pattern prompts in a stacking manner (rather than the popular concatenation manner). Experimental results show (1) training with our large-scale dataset substantially benefits pattern generalization ($+26.66 \%$ $\mu AP$), (2) the proposed ImageStacker facilitates effective in-context ICD (another round of $+16.75 \%$ $\mu AP$), and (3) AnyPattern enables in-context ICD, i.e., without such a large-scale dataset, in-context learning does not emerge even with our ImageStacker. Beyond the ICD task, we also demonstrate how AnyPattern can benefit artists, i.e., the pattern retrieval method trained on AnyPattern can be generalized to identify style mimicry by text-to-image models. The project is publicly available at https://anypattern.github.io.
Understanding News Creation Intents: Frame, Dataset, and Method
Wang, Zhengjia, Wang, Danding, Sheng, Qiang, Cao, Juan, Su, Silong, Sun, Yifan, Hu, Beizhe, Ma, Siyuan
As the disruptive changes in the media economy and the proliferation of alternative news media outlets, news intent has progressively deviated from ethical standards that serve the public interest. News intent refers to the purpose or intention behind the creation of a news article. While the significance of research on news intent has been widely acknowledged, the absence of a systematic news intent understanding framework hinders further exploration of news intent and its downstream applications. To bridge this gap, we propose News INTent (NINT) frame, the first component-aware formalism for understanding the news creation intent based on research in philosophy, psychology, and cognitive science. Within this frame, we define the news intent identification task and provide a benchmark dataset with fine-grained labels along with an efficient benchmark method. Experiments demonstrate that NINT is beneficial in both the intent identification task and downstream tasks that demand a profound understanding of news. This work marks a foundational step towards a more systematic exploration of news creation intents.
Clustered Federated Learning based on Nonconvex Pairwise Fusion
Yu, Xue, Liu, Ziyi, Wang, Wu, Sun, Yifan
This study investigates clustered federated learning (FL), one of the formulations of FL with non-i.i.d. data, where the devices are partitioned into clusters and each cluster optimally fits its data with a localized model. We propose a clustered FL framework that incorporates a nonconvex penalty to pairwise differences of parameters. Without a priori knowledge of the set of devices in each cluster and the number of clusters, this framework can autonomously estimate cluster structures. To implement the proposed framework, we introduce a novel clustered FL method called Fusion Penalized Federated Clustering (FPFC). Building upon the standard alternating direction method of multipliers (ADMM), FPFC can perform partial updates at each communication round and allows parallel computation with variable workload. These strategies significantly reduce the communication cost while ensuring privacy, making it practical for FL. We also propose a new warmup strategy for hyperparameter tuning in FL settings and explore the asynchronous variant of FPFC (asyncFPFC). Theoretical analysis provides convergence guarantees for FPFC with general losses and establishes the statistical convergence rate under a linear model with squared loss. Extensive experiments have demonstrated the superiority of FPFC compared to current methods, including robustness and generalization capability.