Sun, Xu
Label Words are Anchors: An Information Flow Perspective for Understanding In-Context Learning
Wang, Lean, Li, Lei, Dai, Damai, Chen, Deli, Zhou, Hao, Meng, Fandong, Zhou, Jie, Sun, Xu
In-context learning (ICL) emerges as a promising capability of large language models (LLMs) by providing them with demonstration examples to perform diverse tasks. However, the underlying mechanism of how LLMs learn from the provided context remains under-explored. In this paper, we investigate the working mechanism of ICL through an information flow lens. Our findings reveal that label words in the demonstration examples function as anchors: (1) semantic information aggregates into label word representations during the shallow computation layers' processing; (2) the consolidated information in label words serves as a reference for LLMs' final predictions. Based on these insights, we introduce an anchor re-weighting method to improve ICL performance, a demonstration compression technique to expedite inference, and an analysis framework for diagnosing ICL errors in GPT2-XL. The promising applications of our findings again validate the uncovered ICL working mechanism and pave the way for future studies.
TimeChat: A Time-sensitive Multimodal Large Language Model for Long Video Understanding
Ren, Shuhuai, Yao, Linli, Li, Shicheng, Sun, Xu, Hou, Lu
This work proposes TimeChat, a time-sensitive multimodal large language model specifically designed for long video understanding. Our model incorporates two key architectural contributions: (1) a timestamp-aware frame encoder that binds visual content with the timestamp of each frame, and (2) a sliding video Q-Former that produces a video token sequence of varying lengths to accommodate videos of various durations. Additionally, we construct an instruction-tuning dataset, encompassing 6 tasks and a total of 125K instances, to further enhance TimeChat's instruction-following performance. Experiment results across various video understanding tasks, such as dense captioning, temporal grounding, and highlight detection, demonstrate TimeChat's strong zero-shot temporal localization and reasoning capabilities. For example, it achieves +9.2 F1 score and +2.8 CIDEr on YouCook2, +5.8 HIT@1 on QVHighlights, and +27.5 R@1 (IoU=0.5) on Charades-STA, compared to state-of-the-art video large language models, holding the potential to serve as a versatile video assistant for long-form video comprehension tasks and satisfy realistic user requirements.
VITATECS: A Diagnostic Dataset for Temporal Concept Understanding of Video-Language Models
Li, Shicheng, Li, Lei, Ren, Shuhuai, Liu, Yuanxin, Liu, Yi, Gao, Rundong, Sun, Xu, Hou, Lu
The ability to perceive how objects change over time is a crucial ingredient in human intelligence. However, current benchmarks cannot faithfully reflect the temporal understanding abilities of video-language models (VidLMs) due to the existence of static visual shortcuts. To remedy this issue, we present VITATECS, a diagnostic VIdeo-Text dAtaset for the evaluation of TEmporal Concept underStanding. Specifically, we first introduce a fine-grained taxonomy of temporal concepts in natural language in order to diagnose the capability of VidLMs to comprehend different temporal aspects. Furthermore, to disentangle the correlation between static and temporal information, we generate counterfactual video descriptions that differ from the original one only in the specified temporal aspect. We employ a semi-automatic data collection framework using large language models and human-in-the-loop annotation to obtain high-quality counterfactual descriptions efficiently. Evaluation of representative video-language understanding models confirms their deficiency in temporal understanding, revealing the need for greater emphasis on the temporal elements in video-language research.
Towards Codable Watermarking for Injecting Multi-bit Information to LLM
Wang, Lean, Yang, Wenkai, Chen, Deli, Zhou, Hao, Lin, Yankai, Meng, Fandong, Zhou, Jie, Sun, Xu
As large language models (LLMs) generate texts with increasing fluency and realism, there is a growing need to identify the source of texts to prevent the abuse of LLMs. Text watermarking techniques have proven reliable in distinguishing whether a text is generated by LLMs by injecting hidden patterns into the generated texts. However, we argue that existing watermarking methods for LLMs are encoding-inefficient (only contain one bit of information - whether it is generated from an LLM or not) and cannot flexibly meet the diverse information encoding needs (such as encoding model version, generation time, user id, etc.) in different LLMs application scenarios. In this work, we conduct the first systematic study on the topic of Codable Text Watermarking for LLMs (CTWL) that allows text watermarks to carry more customizable information. First of all, we study the taxonomy of LLM watermarking technology and give a mathematical formulation for CTWL. Additionally, we provide a comprehensive evaluation system for CTWL: (1) watermarking success rate, (2) robustness against various corruptions, (3) coding rate of payload information, (4) encoding and decoding efficiency, (5) impacts on the quality of the generated text. To meet the requirements of these non-Paretoimproving metrics, we devise a CTWL method named Balance-Marking, based on the motivation of ensuring that available and unavailable vocabularies for encoding information have approximately equivalent probabilities. Compared to the random vocabulary partitioning extended from the existing work, a probabilitybalanced vocabulary partition can significantly improve the quality of the generated text. Extensive experimental results have shown that our method outperforms a direct baseline under comprehensive evaluation. We hope this work can raise the community's awareness of the importance of CTWL and inspire further research on designing more efficient, practical, and robust watermarking methods for LLMs. Recently, with the explosive development of Large Language Models (LLMs) (OpenAI, 2022; Touvron et al., 2023), there has been growing concern in the community about the potential negative effects of the AI-generated content (AIGC).
TESTA: Temporal-Spatial Token Aggregation for Long-form Video-Language Understanding
Ren, Shuhuai, Chen, Sishuo, Li, Shicheng, Sun, Xu, Hou, Lu
Large-scale video-language pre-training has made remarkable strides in advancing video-language understanding tasks. However, the heavy computational burden of video encoding remains a formidable efficiency bottleneck, particularly for long-form videos. These videos contain massive visual tokens due to their inherent 3D properties and spatiotemporal redundancy, making it challenging to capture complex temporal and spatial relationships. To tackle this issue, we propose an efficient method called TEmporal-Spatial Token Aggregation (TESTA). TESTA condenses video semantics by adaptively aggregating similar frames, as well as similar patches within each frame. TESTA can reduce the number of visual tokens by 75% and thus accelerate video encoding. Building upon TESTA, we introduce a pre-trained video-language model equipped with a divided space-time token aggregation module in each video encoder block. We evaluate our model on five datasets for paragraph-to-video retrieval and long-form VideoQA tasks. Experimental results show that TESTA improves computing efficiency by 1.7 times, and achieves significant performance gains from its scalability in processing longer input frames, e.g., +13.7 R@1 on QuerYD and +6.5 R@1 on Condensed Movie.
Prompt Pre-Training with Twenty-Thousand Classes for Open-Vocabulary Visual Recognition
Ren, Shuhuai, Zhang, Aston, Zhu, Yi, Zhang, Shuai, Zheng, Shuai, Li, Mu, Smola, Alex, Sun, Xu
This work proposes POMP, a prompt pre-training method for vision-language models. Being memory and computation efficient, POMP enables the learned prompt to condense semantic information for a rich set of visual concepts with over twenty-thousand classes. Once pre-trained, the prompt with a strong transferable ability can be directly plugged into a variety of visual recognition tasks including image classification, semantic segmentation, and object detection, to boost recognition performances in a zero-shot manner. Empirical evaluation shows that POMP achieves state-of-the-art performances on 21 datasets, e.g., 67.0% average accuracy on 10 classification datasets (+3.1% compared to CoOp) and 84.4 hIoU on open-vocabulary Pascal VOC segmentation (+6.9 compared to ZSSeg). Our code is available at https://github.com/amazon-science/prompt-pretraining.
Incorporating Pre-trained Model Prompting in Multimodal Stock Volume Movement Prediction
Chen, Ruibo, Zhang, Zhiyuan, Liu, Yi, Bao, Ruihan, Harimoto, Keiko, Sun, Xu
Multimodal stock trading volume movement prediction with stock-related news is one of the fundamental problems in the financial area. Existing multimodal works that train models from scratch face the problem of lacking universal knowledge when modeling financial news. In addition, the models ability may be limited by the lack of domain-related knowledge due to insufficient data in the datasets. To handle this issue, we propose the Prompt-based MUltimodal Stock volumE prediction model (ProMUSE) to process text and time series modalities. We use pre-trained language models for better comprehension of financial news and adopt prompt learning methods to leverage their capability in universal knowledge to model textual information. Besides, simply fusing two modalities can cause harm to the unimodal representations. Thus, we propose a novel cross-modality contrastive alignment while reserving the unimodal heads beside the fusion head to mitigate this problem. Extensive experiments demonstrate that our proposed ProMUSE outperforms existing baselines. Comprehensive analyses further validate the effectiveness of our architecture compared to potential variants and learning mechanisms.
MultiCapCLIP: Auto-Encoding Prompts for Zero-Shot Multilingual Visual Captioning
Yang, Bang, Liu, Fenglin, Wu, Xian, Wang, Yaowei, Sun, Xu, Zou, Yuexian
Supervised visual captioning models typically require a large scale of images or videos paired with descriptions in a specific language (i.e., the vision-caption pairs) for training. However, collecting and labeling large-scale datasets is time-consuming and expensive for many scenarios and languages. Therefore, sufficient labeled pairs are usually not available. To deal with the label shortage problem, we present a simple yet effective zero-shot approach MultiCapCLIP that can generate visual captions for different scenarios and languages without any labeled vision-caption pairs of downstream datasets. In the training stage, MultiCapCLIP only requires text data for input. Then it conducts two main steps: 1) retrieving concept prompts that preserve the corresponding domain knowledge of new scenarios; 2) auto-encoding the prompts to learn writing styles to output captions in a desired language. In the testing stage, MultiCapCLIP instead takes visual data as input directly to retrieve the concept prompts to generate the final visual descriptions. The extensive experiments on image and video captioning across four benchmarks and four languages (i.e., English, Chinese, German, and French) confirm the effectiveness of our approach. Compared with state-of-the-art zero-shot and weakly-supervised methods, our method achieves 4.8% and 21.5% absolute improvements in terms of BLEU@4 and CIDEr metrics. Our code is available at https://github.com/yangbang18/MultiCapCLIP.
M$^3$IT: A Large-Scale Dataset towards Multi-Modal Multilingual Instruction Tuning
Li, Lei, Yin, Yuwei, Li, Shicheng, Chen, Liang, Wang, Peiyi, Ren, Shuhuai, Li, Mukai, Yang, Yazheng, Xu, Jingjing, Sun, Xu, Kong, Lingpeng, Liu, Qi
Instruction tuning has significantly advanced large language models (LLMs) such as ChatGPT, enabling them to align with human instructions across diverse tasks. However, progress in open vision-language models (VLMs) has been limited due to the scarcity of high-quality instruction datasets. To tackle this challenge and promote research in the vision-language field, we introduce the Multi-Modal, Multilingual Instruction Tuning (M$^3$IT) dataset, designed to optimize VLM alignment with human instructions. Our M$^3$IT dataset comprises 40 carefully curated datasets, including 2.4 million instances and 400 manually written task instructions, reformatted into a vision-to-text structure. Key tasks are translated into 80 languages with an advanced translation system, ensuring broader accessibility. M$^3$IT surpasses previous datasets regarding task coverage, instruction number and instance scale. Moreover, we develop Ying-VLM, a VLM model trained on our M$^3$IT dataset, showcasing its potential to answer complex questions requiring world knowledge, generalize to unseen video tasks, and comprehend unseen instructions in Chinese. We have open-sourced the dataset to encourage further research.
A Survey on In-context Learning
Dong, Qingxiu, Li, Lei, Dai, Damai, Zheng, Ce, Wu, Zhiyong, Chang, Baobao, Sun, Xu, Xu, Jingjing, Li, Lei, Sui, Zhifang
With the increasing ability of large language models (LLMs), in-context learning (ICL) has become a new paradigm for natural language processing (NLP), where LLMs make predictions only based on contexts augmented with a few examples. It has been a new trend to explore ICL to evaluate and extrapolate the ability of LLMs. In this paper, we aim to survey and summarize the progress and challenges of ICL. We first present a formal definition of ICL and clarify its correlation to related studies. Then, we organize and discuss advanced techniques, including training strategies, demonstration designing strategies, as well as related analysis. Finally, we discuss the challenges of ICL and provide potential directions for further research. We hope that our work can encourage more research on uncovering how ICL works and improving ICL.