Not enough data to create a plot.
Try a different view from the menu above.
Sun, Weiwei
Instruction Distillation Makes Large Language Models Efficient Zero-shot Rankers
Sun, Weiwei, Chen, Zheng, Ma, Xinyu, Yan, Lingyong, Wang, Shuaiqiang, Ren, Pengjie, Chen, Zhumin, Yin, Dawei, Ren, Zhaochun
Recent studies have demonstrated the great potential of Large Language Models (LLMs) serving as zero-shot relevance rankers. The typical approach involves making comparisons between pairs or lists of documents. Although effective, these listwise and pairwise methods are not efficient and also heavily rely on intricate prompt engineering. To tackle this problem, we introduce a novel instruction distillation method. The key idea is to distill the pairwise ranking ability of open-sourced LLMs to a simpler but more efficient pointwise ranking. Specifically, given the same LLM, we first rank documents using the effective pairwise approach with complex instructions, and then distill the teacher predictions to the pointwise approach with simpler instructions. Evaluation results on the BEIR, TREC, and ReDial datasets demonstrate that instruction distillation can improve efficiency by 10 to 100x and also enhance the ranking performance of LLMs. Furthermore, our approach surpasses the performance of existing supervised methods like monoT5 and is on par with the state-of-the-art zero-shot methods. The code to reproduce our results is available at www.github.com/sunnweiwei/RankGPT.
Metaphorical User Simulators for Evaluating Task-oriented Dialogue Systems
Sun, Weiwei, Guo, Shuyu, Zhang, Shuo, Ren, Pengjie, Chen, Zhumin, de Rijke, Maarten, Ren, Zhaochun
Task-oriented dialogue systems (TDSs) are assessed mainly in an offline setting or through human evaluation. The evaluation is often limited to single-turn or is very time-intensive. As an alternative, user simulators that mimic user behavior allow us to consider a broad set of user goals to generate human-like conversations for simulated evaluation. Employing existing user simulators to evaluate TDSs is challenging as user simulators are primarily designed to optimize dialogue policies for TDSs and have limited evaluation capabilities. Moreover, the evaluation of user simulators is an open challenge. In this work, we propose a metaphorical user simulator for end-to-end TDS evaluation, where we define a simulator to be metaphorical if it simulates user's analogical thinking in interactions with systems. We also propose a tester-based evaluation framework to generate variants, i.e., dialogue systems with different capabilities. Our user simulator constructs a metaphorical user model that assists the simulator in reasoning by referring to prior knowledge when encountering new items. We estimate the quality of simulators by checking the simulated interactions between simulators and variants. Our experiments are conducted using three TDS datasets. The proposed user simulator demonstrates better consistency with manual evaluation than an agenda-based simulator and a seq2seq model on three datasets; our tester framework demonstrates efficiency and has been tested on multiple tasks, such as conversational recommendation and e-commerce dialogues.
Knowing What LLMs DO NOT Know: A Simple Yet Effective Self-Detection Method
Zhao, Yukun, Yan, Lingyong, Sun, Weiwei, Xing, Guoliang, Meng, Chong, Wang, Shuaiqiang, Cheng, Zhicong, Ren, Zhaochun, Yin, Dawei
Large Language Models (LLMs) have shown great potential in Natural Language Processing (NLP) tasks. However, recent literature reveals that LLMs generate nonfactual responses intermittently, which impedes the LLMs' reliability for further utilization. In this paper, we propose a novel self-detection method to detect which questions that a LLM does not know that are prone to generate nonfactual results. Specifically, we first diversify the textual expressions for a given question and collect the corresponding answers. Then we examine the divergencies between the generated answers to identify the questions that the model may generate falsehoods. All of the above steps can be accomplished by prompting the LLMs themselves without referring to any other external resources. We conduct comprehensive experiments and demonstrate the effectiveness of our method on recently released LLMs, e.g., Vicuna, ChatGPT, and GPT-4.
Is ChatGPT Good at Search? Investigating Large Language Models as Re-Ranking Agents
Sun, Weiwei, Yan, Lingyong, Ma, Xinyu, Wang, Shuaiqiang, Ren, Pengjie, Chen, Zhumin, Yin, Dawei, Ren, Zhaochun
Large Language Models (LLMs) have demonstrated remarkable zero-shot generalization across various language-related tasks, including search engines. However, existing work utilizes the generative ability of LLMs for Information Retrieval (IR) rather than direct passage ranking. The discrepancy between the pre-training objectives of LLMs and the ranking objective poses another challenge. In this paper, we first investigate generative LLMs such as ChatGPT and GPT-4 for relevance ranking in IR. Surprisingly, our experiments reveal that properly instructed LLMs can deliver competitive, even superior results to state-of-the-art supervised methods on popular IR benchmarks. Furthermore, to address concerns about data contamination of LLMs, we collect a new test set called NovelEval, based on the latest knowledge and aiming to verify the model's ability to rank unknown knowledge. Finally, to improve efficiency in real-world applications, we delve into the potential for distilling the ranking capabilities of ChatGPT into small specialized models using a permutation distillation scheme. Our evaluation results turn out that a distilled 440M model outperforms a 3B supervised model on the BEIR benchmark. The code to reproduce our results is available at www.github.com/sunnweiwei/RankGPT.
SSIF: Learning Continuous Image Representation for Spatial-Spectral Super-Resolution
Mai, Gengchen, Lao, Ni, Sun, Weiwei, Ma, Yuchi, Song, Jiaming, Meng, Chenlin, Ma, Hongxu, Rao, Jinmeng, Li, Ziyuan, Ermon, Stefano
Existing digital sensors capture images at fixed spatial and spectral resolutions (e.g., RGB, multispectral, and hyperspectral images), and each combination requires bespoke machine learning models. Neural Implicit Functions partially overcome the spatial resolution challenge by representing an image in a resolution-independent way. However, they still operate at fixed, pre-defined spectral resolutions. To address this challenge, we propose Spatial-Spectral Implicit Function (SSIF), a neural implicit model that represents an image as a function of both continuous pixel coordinates in the spatial domain and continuous wavelengths in the spectral domain. We empirically demonstrate the effectiveness of SSIF on two challenging spatio-spectral super-resolution benchmarks. We observe that SSIF consistently outperforms state-of-the-art baselines even when the baselines are allowed to train separate models at each spectral resolution. We show that SSIF generalizes well to both unseen spatial resolutions and spectral resolutions. Moreover, SSIF can generate high-resolution images that improve the performance of downstream tasks (e.g., land use classification) by 1.7%-7%. While the physical world is continuous, most digital sensors (e.g., cell phone cameras, multispectral or hyperspectral sensors in satellites) can only capture a discrete representation of continuous signals in both spatial and spectral domains (i.e., with a fixed number of spectral bands, such as red, green, and blue). In fact, due to the limited energy of incident photons, fundamental limitations in achievable signal-to-noise ratios (SNR), and time constraints, there is always a trade-off between spatial and spectral resolution (Mei et al., 2020; Ma et al., 2021) However, ML models are typically bespoke to certain resolutions, and models typically do not generalize to spatial or spectral resolutions they have not been trained on.
RADE: Reference-Assisted Dialogue Evaluation for Open-Domain Dialogue
Shi, Zhengliang, Sun, Weiwei, Zhang, Shuo, Zhang, Zhen, Ren, Pengjie, Ren, Zhaochun
Evaluating open-domain dialogue systems is challenging for reasons such as the one-to-many problem, i.e., many appropriate responses other than just the golden response. As of now, automatic evaluation methods need better consistency with humans, while reliable human evaluation can be time- and cost-intensive. To this end, we propose the Reference-Assisted Dialogue Evaluation (RADE) approach under the multi-task learning framework, which leverages the pre-created utterance as reference other than the gold response to relief the one-to-many problem. Specifically, RADE explicitly compares reference and the candidate response to predict their overall scores. Moreover, an auxiliary response generation task enhances prediction via a shared encoder. To support RADE, we extend three datasets with additional rated responses other than just a golden response by human annotation. Experiments on our three datasets and two existing benchmarks demonstrate the effectiveness of our method, where Pearson, Spearman, and Kendall correlations with human evaluation outperform state-of-the-art baselines.
Is Argument Structure of Learner Chinese Understandable: A Corpus-Based Analysis
Duan, Yuguang, Lin, Zi, Sun, Weiwei
This paper presents a corpus-based analysis of argument structure errors in learner Chinese. The data for analysis includes sentences produced by language learners as well as their corrections by native speakers. We couple the data with semantic role labeling annotations that are manually created by two senior students whose majors are both Applied Linguistics. The annotation procedure is guided by the Chinese PropBank specification, which is originally developed to cover first language phenomena. Nevertheless, we find that it is quite comprehensive for handling second language phenomena. The inter-annotator agreement is rather high, suggesting the understandability of learner texts to native speakers. Based on our annotations, we present a preliminary analysis of competence errors related to argument structure. In particular, speech errors related to word order, word selection, lack of proposition, and argument-adjunct confounding are discussed.
Answering Ambiguous Questions via Iterative Prompting
Sun, Weiwei, Cai, Hengyi, Chen, Hongshen, Ren, Pengjie, Chen, Zhumin, de Rijke, Maarten, Ren, Zhaochun
In open-domain question answering, due to the ambiguity of questions, multiple plausible answers may exist. To provide feasible answers to an ambiguous question, one approach is to directly predict all valid answers, but this can struggle with balancing relevance and diversity. An alternative is to gather candidate answers and aggregate them, but this method can be computationally costly and may neglect dependencies among answers. In this paper, we present AmbigPrompt to address the imperfections of existing approaches to answering ambiguous questions. Specifically, we integrate an answering model with a prompting model in an iterative manner. The prompting model adaptively tracks the reading process and progressively triggers the answering model to compose distinct and relevant answers. Additionally, we develop a task-specific post-pretraining approach for both the answering model and the prompting model, which greatly improves the performance of our framework. Empirical studies on two commonly-used open benchmarks show that AmbigPrompt achieves state-of-the-art or competitive results while using less memory and having a lower inference latency than competing approaches. Additionally, AmbigPrompt also performs well in low-resource settings. The code are available at: https://github.com/sunnweiwei/AmbigPrompt.
Towards Explainable Conversational Recommender Systems
Guo, Shuyu, Zhang, Shuo, Sun, Weiwei, Ren, Pengjie, Chen, Zhumin, Ren, Zhaochun
Explanations in conventional recommender systems have demonstrated benefits in helping the user understand the rationality of the recommendations and improving the system's efficiency, transparency, and trustworthiness. In the conversational environment, multiple contextualized explanations need to be generated, which poses further challenges for explanations. To better measure explainability in conversational recommender systems (CRS), we propose ten evaluation perspectives based on concepts from conventional recommender systems together with the characteristics of CRS. We assess five existing CRS benchmark datasets using these metrics and observe the necessity of improving the explanation quality of CRS. To achieve this, we conduct manual and automatic approaches to extend these dialogues and construct a new CRS dataset, namely Explainable Recommendation Dialogues (E-ReDial). It includes 756 dialogues with over 2,000 high-quality rewritten explanations. We compare two baseline approaches to perform explanation generation based on E-ReDial. Experimental results suggest that models trained on E-ReDial can significantly improve explainability while introducing knowledge into the models can further improve the performance. GPT-3 in the in-context learning setting can generate more realistic and diverse movie descriptions. In contrast, T5 training on E-ReDial can better generate clear reasons for recommendations based on user preferences. E-ReDial is available at https://github.com/Superbooming/E-ReDial.
Generative Knowledge Selection for Knowledge-Grounded Dialogues
Sun, Weiwei, Ren, Pengjie, Ren, Zhaochun
Knowledge selection is the key in knowledge-grounded dialogues (KGD), which aims to select an appropriate knowledge snippet to be used in the utterance based on dialogue history. Previous studies mainly employ the classification approach to classify each candidate snippet as "relevant" or "irrelevant" independently. However, such approaches neglect the interactions between snippets, leading to difficulties in inferring the meaning of snippets. Moreover, they lack modeling of the discourse structure of dialogue-knowledge interactions. We propose a simple yet effective generative approach for knowledge selection, called GenKS. GenKS learns to select snippets by generating their identifiers with a sequence-to-sequence model. GenKS therefore captures intra-knowledge interaction inherently through attention mechanisms. Meanwhile, we devise a hyperlink mechanism to model the dialogue-knowledge interactions explicitly. We conduct experiments on three benchmark datasets, and verify GenKS achieves the best results on both knowledge selection and response generation.