Goto

Collaborating Authors

 Sun, Jingwei


Provable Defense against Privacy Leakage in Federated Learning from Representation Perspective

arXiv.org Artificial Intelligence

Federated learning (FL) is a popular distributed learning framework that can reduce privacy risks by not explicitly sharing private data. However, recent works demonstrated that sharing model updates makes FL vulnerable to inference attacks. In this work, we show our key observation that the data representation leakage from gradients is the essential cause of privacy leakage in FL. We also provide an analysis of this observation to explain how the data presentation is leaked. Based on this observation, we propose a defense against model inversion attack in FL. The key idea of our defense is learning to perturb data representation such that the quality of the reconstructed data is severely degraded, while FL performance is maintained. In addition, we derive certified robustness guarantee to FL and convergence guarantee to FedAvg, after applying our defense. To evaluate our defense, we conduct experiments on MNIST and CIFAR10 for defending against the DLG attack and GS attack. Without sacrificing accuracy, the results demonstrate that our proposed defense can increase the mean squared error between the reconstructed data and the raw data by as much as more than 160X for both DLG attack and GS attack, compared with baseline defense methods. The privacy of the FL system is significantly improved.


LotteryFL: Personalized and Communication-Efficient Federated Learning with Lottery Ticket Hypothesis on Non-IID Datasets

arXiv.org Machine Learning

Federated learning is a popular distributed machine learning paradigm with enhanced privacy. Its primary goal is learning a global model that offers good performance for the participants as many as possible. The technology is rapidly advancing with many unsolved challenges, among which statistical heterogeneity (i.e., non-IID) and communication efficiency are two critical ones that hinder the development of federated learning. In this work, we propose LotteryFL -- a personalized and communication-efficient federated learning framework via exploiting the Lottery Ticket hypothesis. In LotteryFL, each client learns a lottery ticket network (i.e., a subnetwork of the base model) by applying the Lottery Ticket hypothesis, and only these lottery networks will be communicated between the server and clients. Rather than learning a shared global model in classic federated learning, each client learns a personalized model via LotteryFL; the communication cost can be significantly reduced due to the compact size of lottery networks. To support the training and evaluation of our framework, we construct non-IID datasets based on MNIST, CIFAR-10 and EMNIST by taking feature distribution skew, label distribution skew and quantity skew into consideration. Experiments on these non-IID datasets demonstrate that LotteryFL significantly outperforms existing solutions in terms of personalization and communication cost.