Not enough data to create a plot.
Try a different view from the menu above.
Sun, Haowei
TeraSim: Uncovering Unknown Unsafe Events for Autonomous Vehicles through Generative Simulation
Sun, Haowei, Yan, Xintao, Qiao, Zhijie, Zhu, Haojie, Sun, Yihao, Wang, Jiawei, Shen, Shengyin, Hogue, Darian, Ananta, Rajanikant, Johnson, Derek, Stevens, Greg, McGuire, Greg, Wei, Yifan, Zheng, Wei, Sun, Yong, Fukai, Yasuo, Liu, Henry X.
Traffic simulation is essential for autonomous vehicle (AV) development, enabling comprehensive safety evaluation across diverse driving conditions. However, traditional rule-based simulators struggle to capture complex human interactions, while data-driven approaches often fail to maintain long-term behavioral realism or generate diverse safety-critical events. To address these challenges, we propose TeraSim, an open-source, high-fidelity traffic simulation platform designed to uncover unknown unsafe events and efficiently estimate AV statistical performance metrics, such as crash rates. TeraSim is designed for seamless integration with third-party physics simulators and standalone AV stacks, to construct a complete AV simulation system. Experimental results demonstrate its effectiveness in generating diverse safety-critical events involving both static and dynamic agents, identifying hidden deficiencies in AV systems, and enabling statistical performance evaluation. These findings highlight TeraSim's potential as a practical tool for AV safety assessment, benefiting researchers, developers, and policymakers. The code is available at https://github.com/mcity/TeraSim.
A Cross-Scene Benchmark for Open-World Drone Active Tracking
Sun, Haowei, Hu, Jinwu, Zhang, Zhirui, Tian, Haoyuan, Xie, Xinze, Wang, Yufeng, Yu, Zhuliang, Xie, Xiaohua, Tan, Mingkui
Drone Visual Active Tracking aims to autonomously follow a target object by controlling the motion system based on visual observations, providing a more practical solution for effective tracking in dynamic environments. However, accurate Drone Visual Active Tracking using reinforcement learning remains challenging due to the absence of a unified benchmark, the complexity of open-world environments with frequent interference, and the diverse motion behavior of dynamic targets. To address these issues, we propose a unified cross-scene cross-domain benchmark for open-world drone active tracking called DAT. The DAT benchmark provides 24 visually complex environments to assess the algorithms' cross-scene and cross-domain generalization abilities, and high-fidelity modeling of realistic robot dynamics. Additionally, we propose a reinforcement learning-based drone tracking method called R-VAT, which aims to improve the performance of drone tracking targets in complex scenarios. Specifically, inspired by curriculum learning, we introduce a Curriculum-Based Training strategy that progressively enhances the agent tracking performance in vast environments with complex interference. We design a goal-centered reward function to provide precise feedback to the drone agent, preventing targets farther from the center of view from receiving higher rewards than closer ones. This allows the drone to adapt to the diverse motion behavior of open-world targets. Experiments demonstrate that the R-VAT has about 400% improvement over the SOTA method in terms of the cumulative reward metric.
Corner Case Generation and Analysis for Safety Assessment of Autonomous Vehicles
Sun, Haowei, Feng, Shuo, Yan, Xintao, Liu, Henry X.
Testing and evaluation is a crucial step in the development and deployment of Connected and Automated Vehicles (CAVs). To comprehensively evaluate the performance of CAVs, it is of necessity to test the CAVs in safety-critical scenarios, which rarely happen in naturalistic driving environment. Therefore, how to purposely and systematically generate these corner cases becomes an important problem. Most existing studies focus on generating adversarial examples for perception systems of CAVs, whereas limited efforts have been put on the decision-making systems, which is the highlight of this paper. As the CAVs need to interact with numerous background vehicles (BVs) for a long duration, variables that define the corner cases are usually high dimensional, which makes the generation a challenging problem. In this paper, a unified framework is proposed to generate corner cases for the decision-making systems. To address the challenge brought by high dimensionality, the driving environment is formulated based on Markov Decision Process, and the deep reinforcement learning techniques are applied to learn the behavior policy of BVs. With the learned policy, BVs will behave and interact with the CAVs more aggressively, resulting in more corner cases. To further analyze the generated corner cases, the techniques of feature extraction and clustering are utilized. By selecting representative cases of each cluster and outliers, the valuable corner cases can be identified from all generated corner cases. Simulation results of a highway driving environment show that the proposed methods can effectively generate and identify the valuable corner cases.
Testing Scenario Library Generation for Connected and Automated Vehicles, Part II: Case Studies
Feng, Shuo, Feng, Yiheng, Sun, Haowei, Bao, Shao, Misra, Aditi, Zhang, Yi, Liu, Henry X.
Testing and evaluation is a critical step in the development and deployment of connected and automated vehicles (CAVs), and yet there is no systematic framework to generate testing scenario library. In Part I of the paper, a general framework is proposed to solve the testing scenario library generation (TSLG) problem with four associated research questions. The methodologies of solving each research question have been proposed and analyzed theoretically. In Part II of the paper, three case studies are designed and implemented to demonstrate the proposed methodologies. First, a cut-in case is designed for safety evaluation and to provide answers to three particular questions in the framework, i.e., auxiliary objective function design, naturalistic driving data (NDD) analysis, and surrogate model (SM) construction. Second, a highway exit case is designed for functionality evaluation. Third, a car-following case is designed to show the ability of the proposed methods in handling high-dimensional scenarios. To address the challenges brought by higher dimensions, the proposed methods are enhanced by reinforcement learning (RL) techniques. Typical CAV models are chosen and evaluated by simulations. Results show that the proposed methods can accelerate the CAV evaluation process by $255$ to $3.75\times10^5$ times compared with the public road test method, with same accuracy of indices.