Sun, Fuchun
Measuring Acoustics with Collaborative Multiple Agents
Yu, Yinfeng, Chen, Changan, Cao, Lele, Yang, Fangkai, Sun, Fuchun
As humans, we hear sound every second of our life. The sound we hear is often affected by the acoustics of the environment surrounding us. For example, a spacious hall leads to more reverberation. Room Impulse Responses (RIR) are commonly used to characterize environment acoustics as a function of the scene geometry, materials, and source/receiver locations. Traditionally, RIRs are measured by setting up a loudspeaker and microphone in the environment for all source/receiver locations, which is time-consuming and inefficient. We propose to let two robots measure the environment's acoustics by actively moving and emitting/receiving sweep signals. We also devise a collaborative multi-agent policy where these two robots are trained to explore the environment's acoustics while being rewarded for wide exploration and accurate prediction. We show that the robots learn to collaborate and move to explore environment acoustics while minimizing the prediction error. To the best of our knowledge, we present the very first problem formulation and solution to the task of collaborative environment acoustics measurements with multiple agents.
A Survey of Knowledge Graph Reasoning on Graph Types: Static, Dynamic, and Multimodal
Liang, Ke, Meng, Lingyuan, Liu, Meng, Liu, Yue, Tu, Wenxuan, Wang, Siwei, Zhou, Sihang, Liu, Xinwang, Sun, Fuchun
Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research direction. It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering, recommendation systems, and etc. According to the graph types, existing KGR models can be roughly divided into three categories, i.e., static models, temporal models, and multi-modal models. Early works in this domain mainly focus on static KGR, and recent works try to leverage the temporal and multi-modal information, which are more practical and closer to real-world. However, no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a first survey for knowledge graph reasoning tracing from static to temporal and then to multi-modal KGs. Concretely, the models are reviewed based on bi-level taxonomy, i.e., top-level (graph types) and base-level (techniques and scenarios). Besides, the performances, as well as datasets, are summarized and presented. Moreover, we point out the challenges and potential opportunities to enlighten the readers. The corresponding open-source repository is shared on GitHub https://github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning.
Towards the Sparseness of Projection Head in Self-Supervised Learning
Song, Zeen, Su, Xingzhe, Wang, Jingyao, Qiang, Wenwen, Zheng, Changwen, Sun, Fuchun
In recent years, self-supervised learning (SSL) has emerged as a promising approach for extracting valuable representations from unlabeled data. One successful SSL method is contrastive learning, which aims to bring positive examples closer while pushing negative examples apart. Many current contrastive learning approaches utilize a parameterized projection head. Through a combination of empirical analysis and theoretical investigation, we provide insights into the internal mechanisms of the projection head and its relationship with the phenomenon of dimensional collapse. Our findings demonstrate that the projection head enhances the quality of representations by performing contrastive loss in a projected subspace. Therefore, we propose an assumption that only a subset of features is necessary when minimizing the contrastive loss of a mini-batch of data. Theoretical analysis further suggests that a sparse projection head can enhance generalization, leading us to introduce SparseHead - a regularization term that effectively constrains the sparsity of the projection head, and can be seamlessly integrated with any self-supervised learning (SSL) approaches. Our experimental results validate the effectiveness of SparseHead, demonstrating its ability to improve the performance of existing contrastive methods.
A Dimensional Structure based Knowledge Distillation Method for Cross-Modal Learning
Si, Lingyu, Dong, Hongwei, Qiang, Wenwen, Yu, Junzhi, Zhai, Wenlong, Zheng, Changwen, Xu, Fanjiang, Sun, Fuchun
Due to limitations in data quality, some essential visual tasks are difficult to perform independently. Introducing previously unavailable information to transfer informative dark knowledge has been a common way to solve such hard tasks. However, research on why transferred knowledge works has not been extensively explored. To address this issue, in this paper, we discover the correlation between feature discriminability and dimensional structure (DS) by analyzing and observing features extracted from simple and hard tasks. On this basis, we express DS using deep channel-wise correlation and intermediate spatial distribution, and propose a novel cross-modal knowledge distillation (CMKD) method for better supervised cross-modal learning (CML) performance. The proposed method enforces output features to be channel-wise independent and intermediate ones to be uniformly distributed, thereby learning semantically irrelevant features from the hard task to boost its accuracy. This is especially useful in specific applications where the performance gap between dual modalities is relatively large. Furthermore, we collect a real-world CML dataset to promote community development. The dataset contains more than 10,000 paired optical and radar images and is continuously being updated. Experimental results on real-world and benchmark datasets validate the effectiveness of the proposed method.
Structure-Aware DropEdge Towards Deep Graph Convolutional Networks
Han, Jiaqi, Huang, Wenbing, Rong, Yu, Xu, Tingyang, Sun, Fuchun, Huang, Junzhou
It has been discovered that Graph Convolutional Networks (GCNs) encounter a remarkable drop in performance when multiple layers are piled up. The main factor that accounts for why deep GCNs fail lies in over-smoothing, which isolates the network output from the input with the increase of network depth, weakening expressivity and trainability. In this paper, we start by investigating refined measures upon DropEdge -- an existing simple yet effective technique to relieve over-smoothing. We term our method as DropEdge++ for its two structure-aware samplers in contrast to DropEdge: layer-dependent sampler and feature-dependent sampler. Regarding the layer-dependent sampler, we interestingly find that increasingly sampling edges from the bottom layer yields superior performance than the decreasing counterpart as well as DropEdge. We theoretically reveal this phenomenon with Mean-Edge-Number (MEN), a metric closely related to over-smoothing. For the feature-dependent sampler, we associate the edge sampling probability with the feature similarity of node pairs, and prove that it further correlates the convergence subspace of the output layer with the input features. Extensive experiments on several node classification benchmarks, including both full- and semi- supervised tasks, illustrate the efficacy of DropEdge++ and its compatibility with a variety of backbones by achieving generally better performance over DropEdge and the no-drop version.
A Survey on Causal Reinforcement Learning
Zeng, Yan, Cai, Ruichu, Sun, Fuchun, Huang, Libo, Hao, Zhifeng
While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.
Subequivariant Graph Reinforcement Learning in 3D Environments
Chen, Runfa, Han, Jiaqi, Sun, Fuchun, Huang, Wenbing
Learning a shared policy that guides the locomotion of different agents is of core interest in Reinforcement Learning (RL), which leads to the study of morphology-agnostic RL. However, existing benchmarks are highly restrictive in the choice of starting point and target point, constraining the movement of the agents within 2D space. In this work, we propose a novel setup for morphology-agnostic RL, dubbed Subequivariant Graph RL in 3D environments (3D-SGRL). Specifically, we first introduce a new set of more practical yet challenging benchmarks in 3D space that allows the agent to have full Degree-of-Freedoms to explore in arbitrary directions starting from arbitrary configurations. Moreover, to optimize the policy over the enlarged state-action space, we propose to inject geometric symmetry, i.e., subequivariance, into the modeling of the policy and Q-function such that the policy can generalize to all directions, improving exploration efficiency. This goal is achieved by a novel SubEquivariant Transformer (SET) that permits expressive message exchange. Finally, we evaluate the proposed method on the proposed benchmarks, where our method consistently and significantly outperforms existing approaches on single-task, multi-task, and zero-shot generalization scenarios. Extensive ablations are also conducted to verify our design. Code and videos are available on our project page: https://alpc91.github.io/SGRL/.
Introducing Expertise Logic into Graph Representation Learning from A Causal Perspective
Gao, Hang, Li, Jiangmeng, Qiang, Wenwen, Si, Lingyu, Su, Xingzhe, Wu, Fengge, Zheng, Changwen, Sun, Fuchun
Benefiting from the injection of human prior knowledge, graphs, as derived discrete data, are semantically dense so that models can efficiently learn the semantic information from such data. Accordingly, graph neural networks (GNNs) indeed achieve impressive success in various fields. Revisiting the GNN learning paradigms, we discover that the relationship between human expertise and the knowledge modeled by GNNs still confuses researchers. To this end, we introduce motivating experiments and derive an empirical observation that the GNNs gradually learn human expertise in general domains. By further observing the ramifications of introducing expertise logic into graph representation learning, we conclude that leading the GNNs to learn human expertise can improve the model performance. Hence, we propose a novel graph representation learning method to incorporate human expert knowledge into GNN models. The proposed method ensures that the GNN model can not only acquire the expertise held by human experts but also engage in end-to-end learning from datasets. Plentiful experiments on the crafted and real-world domains support the consistent effectiveness of the proposed method.
SE-Bridge: Speech Enhancement with Consistent Brownian Bridge
Qiu, Zhibin, Fu, Mengfan, Sun, Fuchun, Altenbek, Gulila, Huang, Hao
We propose SE-Bridge, a novel method for speech enhancement (SE). After recently applying the diffusion models to speech enhancement, we can achieve speech enhancement by solving a stochastic differential equation (SDE). Each SDE corresponds to a probabilistic flow ordinary differential equation (PF-ODE), and the trajectory of the PF-ODE solution consists of the speech states at different moments. Our approach is based on consistency model that ensure any speech states on the same PF-ODE trajectory, correspond to the same initial state. By integrating the Brownian Bridge process, the model is able to generate high-intelligibility speech samples without adversarial training. This is the first attempt that applies the consistency models to SE task, achieving state-of-the-art results in several metrics while saving 15 x the time required for sampling compared to the diffusion-based baseline. Our experiments on multiple datasets demonstrate the effectiveness of SE-Bridge in SE. Furthermore, we show through extensive experiments on downstream tasks, including Automatic Speech Recognition (ASR) and Speaker Verification (SV), that SE-Bridge can effectively support multiple downstream tasks.
Hybrid Robotic Grasping with a Soft Multimodal Gripper and a Deep Multistage Learning Scheme
Liu, Fukang, Sun, Fuchun, Fang, Bin, Li, Xiang, Sun, Songyu, Liu, Huaping
Grasping has long been considered an important and practical task in robotic manipulation. Yet achieving robust and efficient grasps of diverse objects is challenging, since it involves gripper design, perception, control and learning, etc. Recent learning-based approaches have shown excellent performance in grasping a variety of novel objects. However, these methods either are typically limited to one single grasping mode, or else more end effectors are needed to grasp various objects. In addition, gripper design and learning methods are commonly developed separately, which may not adequately explore the ability of a multimodal gripper. In this paper, we present a deep reinforcement learning (DRL) framework to achieve multistage hybrid robotic grasping with a new soft multimodal gripper. A soft gripper with three grasping modes (i.e., enveloping, sucking, and enveloping_then_sucking) can both deal with objects of different shapes and grasp more than one object simultaneously. We propose a novel hybrid grasping method integrated with the multimodal gripper to optimize the number of grasping actions. We evaluate the DRL framework under different scenarios (i.e., with different ratios of objects of two grasp types). The proposed algorithm is shown to reduce the number of grasping actions (i.e., enlarge the grasping efficiency, with maximum values of 161% in simulations and 154% in real-world experiments) compared to single grasping modes.