Plotting

 Sun, Chenxi


An Electrocardiogram Foundation Model Built on over 10 Million Recordings with External Evaluation across Multiple Domains

arXiv.org Artificial Intelligence

Artificial intelligence (AI) has demonstrated significant potential in ECG analysis and cardiovascular disease assessment. Recently, foundation models have played a remarkable role in advancing medical AI. The development of an ECG foundation model holds the promise of elevating AI-ECG research to new heights. However, building such a model faces several challenges, including insufficient database sample sizes and inadequate generalization across multiple domains. Additionally, there is a notable performance gap between single-lead and multi-lead ECG analyses. We introduced an ECG Foundation Model (ECGFounder), a general-purpose model that leverages real-world ECG annotations from cardiology experts to broaden the diagnostic capabilities of ECG analysis. ECGFounder was trained on over 10 million ECGs with 150 label categories from the Harvard-Emory ECG Database, enabling comprehensive cardiovascular disease diagnosis through ECG analysis. The model is designed to be both an effective out-of-the-box solution, and a to be fine-tunable for downstream tasks, maximizing usability. Importantly, we extended its application to lower rank ECGs, and arbitrary single-lead ECGs in particular. ECGFounder is applicable to supporting various downstream tasks in mobile monitoring scenarios. Experimental results demonstrate that ECGFounder achieves expert-level performance on internal validation sets, with AUROC exceeding 0.95 for eighty diagnoses. It also shows strong classification performance and generalization across various diagnoses on external validation sets. When fine-tuned, ECGFounder outperforms baseline models in demographic analysis, clinical event detection, and cross-modality cardiac rhythm diagnosis. The trained model and data will be publicly released upon publication through the bdsp.io. Our code is available at https://github.com/bdsp-core/ECGFounder


Decoding at the Speed of Thought: Harnessing Parallel Decoding of Lexical Units for LLMs

arXiv.org Artificial Intelligence

Large language models have demonstrated exceptional capability in natural language understanding and generation. However, their generation speed is limited by the inherently sequential nature of their decoding process, posing challenges for real-time applications. This paper introduces Lexical Unit Decoding (LUD), a novel decoding methodology implemented in a data-driven manner, accelerating the decoding process without sacrificing output quality. The core of our approach is the observation that a pre-trained language model can confidently predict multiple contiguous tokens, forming the basis for a \textit{lexical unit}, in which these contiguous tokens could be decoded in parallel. Extensive experiments validate that our method substantially reduces decoding time while maintaining generation quality, i.e., 33\% speed up on natural language generation with no quality loss, and 30\% speed up on code generation with a negligible quality loss of 3\%. Distinctively, LUD requires no auxiliary models and does not require changes to existing architectures. It can also be integrated with other decoding acceleration methods, thus achieving an even more pronounced inference efficiency boost. We posit that the foundational principles of LUD could define a new decoding paradigm for future language models, enhancing their applicability for a broader spectrum of applications. All codes are be publicly available at https://github.com/tjunlp-lab/Lexical-Unit-Decoding-LUD-. Keywords: Parallel Decoding, Lexical Unit Decoding, Large Language Model


Review of Data-centric Time Series Analysis from Sample, Feature, and Period

arXiv.org Artificial Intelligence

Data is essential to performing time series analysis utilizing machine learning approaches, whether for classic models or today's large language models. A good time-series dataset is advantageous for the model's accuracy, robustness, and convergence, as well as task outcomes and costs. The emergence of data-centric AI represents a shift in the landscape from model refinement to prioritizing data quality. Even though time-series data processing methods frequently come up in a wide range of research fields, it hasn't been well investigated as a specific topic. To fill the gap, in this paper, we systematically review different data-centric methods in time series analysis, covering a wide range of research topics. Based on the time-series data characteristics at sample, feature, and period, we propose a taxonomy for the reviewed data selection methods. In addition to discussing and summarizing their characteristics, benefits, and drawbacks targeting time-series data, we also introduce the challenges and opportunities by proposing recommendations, open problems, and possible research topics.


Identity information based on human magnetocardiography signals

arXiv.org Artificial Intelligence

We have developed an individual identification system based on magnetocardiography (MCG) signals captured using optically pumped magnetometers (OPMs). Our system utilizes pattern recognition to analyze the signals obtained at different positions on the body, by scanning the matrices composed of MCG signals with a 2*2 window. In order to make use of the spatial information of MCG signals, we transform the signals from adjacent small areas into four channels of a dataset. We further transform the data into time-frequency matrices using wavelet transforms and employ a convolutional neural network (CNN) for classification. As a result, our system achieves an accuracy rate of 97.04% in identifying individuals. This finding indicates that the MCG signal holds potential for use in individual identification systems, offering a valuable tool for personalized healthcare management.


Curriculum Design Helps Spiking Neural Networks to Classify Time Series

arXiv.org Artificial Intelligence

Spiking Neural Networks (SNNs) have a greater potential for modeling time series data than Artificial Neural Networks (ANNs), due to their inherent neuron dynamics and low energy consumption. However, it is difficult to demonstrate their superiority in classification accuracy, because current efforts mainly focus on designing better network structures. In this work, enlighten by brain-inspired science, we find that, not only the structure but also the learning process should be human-like. To achieve this, we investigate the power of Curriculum Learning (CL) on SNNs by designing a novel method named CSNN with two theoretically guaranteed mechanisms: The active-to-dormant training order makes the curriculum similar to that of human learning and suitable for spiking neurons; The value-based regional encoding makes the neuron activity to mimic the brain memory when learning sequential data. Experiments on multiple time series sources including simulated, sensor, motion, and healthcare demonstrate that CL has a more positive effect on SNNs than ANNs with about twice the accuracy change, and CSNN can increase about 3% SNNs' accuracy by improving network sparsity, neuron firing status, anti-noise ability, and convergence speed.


Curricular and Cyclical Loss for Time Series Learning Strategy

arXiv.org Artificial Intelligence

Time series widely exists in real-world applications and many deep learning models have performed well on it. Current research has shown the importance of learning strategy for models, suggesting that the benefit is the order and size of learning samples. However, no effective strategy has been proposed for time series due to its abstract and dynamic construction. Meanwhile, the existing one-shot tasks and continuous tasks for time series necessitate distinct learning processes and mechanisms. No all-purpose approach has been suggested. In this work, we propose a novel Curricular and CyclicaL loss (CRUCIAL) to learn time series for the first time. It is model- and task-agnostic and can be plugged on top of the original loss with no extra procedure. CRUCIAL has two characteristics: It can arrange an easy-to-hard learning order by dynamically determining the sample contribution and modulating the loss amplitude; It can manage a cyclically changed dataset and achieve an adaptive cycle by correlating the loss distribution and the selection probability. We prove that compared with monotonous size, cyclical size can reduce expected error. Experiments on 3 kinds of tasks and 5 real-world datasets show the benefits of CRUCIAL for most deep learning models when learning time series.


TEST: Text Prototype Aligned Embedding to Activate LLM's Ability for Time Series

arXiv.org Artificial Intelligence

This work summarizes two strategies for completing time-series (TS) tasks using today's language model (LLM): LLM-for-TS, design and train a fundamental large model for TS data; TS-for-LLM, enable the pre-trained LLM to handle TS data. Considering the insufficient data accumulation, limited resources, and semantic context requirements, this work focuses on TS-for-LLM methods, where we aim to activate LLM's ability for TS data by designing a TS embedding method suitable for LLM. The proposed method is named TEST. It first tokenizes TS, builds an encoder to embed them by instance-wise, feature-wise, and text-prototype-aligned contrast, and then creates prompts to make LLM more open to embeddings, and finally implements TS tasks. Experiments are carried out on TS classification and forecasting tasks using 8 LLMs with different structures and sizes. Although its results cannot significantly outperform the current SOTA models customized for TS tasks, by treating LLM as the pattern machine, it can endow LLM's ability to process TS data without compromising the language ability. This paper is intended to serve as a foundational work that will inspire further research.


EE-TTS: Emphatic Expressive TTS with Linguistic Information

arXiv.org Artificial Intelligence

While Current TTS systems perform well in synthesizing high-quality speech, producing highly expressive speech remains a challenge. Emphasis, as a critical factor in determining the expressiveness of speech, has attracted more attention nowadays. Previous works usually enhance the emphasis by adding intermediate features, but they can not guarantee the overall expressiveness of the speech. To resolve this matter, we propose Emphatic Expressive TTS (EE-TTS), which leverages multi-level linguistic information from syntax and semantics. EE-TTS contains an emphasis predictor that can identify appropriate emphasis positions from text and a conditioned acoustic model to synthesize expressive speech with emphasis and linguistic information. Experimental results indicate that EE-TTS outperforms baseline with MOS improvements of 0.49 and 0.67 in expressiveness and naturalness. EE-TTS also shows strong generalization across different datasets according to AB test results.


GRP-FED: Addressing Client Imbalance in Federated Learning via Global-Regularized Personalization

arXiv.org Artificial Intelligence

Since data is presented long-tailed in reality, it is challenging for Federated Learning (FL) to train across decentralized clients as practical applications. We present Global-Regularized Personalization (GRP-FED) to tackle the data imbalanced issue by considering a single global model and multiple local models for each client. With adaptive aggregation, the global model treats multiple clients fairly and mitigates the global long-tailed issue. Each local model is learned from the local data and aligns with its distribution for customization. To prevent the local model from just overfitting, GRP-FED applies an adversarial discriminator to regularize between the learned global-local features. Extensive results show that our GRP-FED improves under both global and local scenarios on real-world MIT-BIH and synthesis CIFAR-10 datasets, achieving comparable performance and addressing client imbalance.


TE-ESN: Time Encoding Echo State Network for Prediction Based on Irregularly Sampled Time Series Data

arXiv.org Artificial Intelligence

Prediction based on Irregularly Sampled Time Series (ISTS) is of wide concern in the real-world applications. For more accurate prediction, the methods had better grasp more data characteristics. Different from ordinary time series, ISTS is characterised with irregular time intervals of intra-series and different sampling rates of inter-series. However, existing methods have suboptimal predictions due to artificially introducing new dependencies in a time series and biasedly learning relations among time series when modeling these two characteristics. In this work, we propose a novel Time Encoding (TE) mechanism. TE can embed the time information as time vectors in the complex domain. It has the the properties of absolute distance and relative distance under different sampling rates, which helps to represent both two irregularities of ISTS. Meanwhile, we create a new model structure named Time Encoding Echo State Network (TE-ESN). It is the first ESNs-based model that can process ISTS data. Besides, TE-ESN can incorporate long short-term memories and series fusion to grasp horizontal and vertical relations. Experiments on one chaos system and three real-world datasets show that TE-ESN performs better than all baselines and has better reservoir property.