Plotting

 Sukegawa, Noriyoshi


Fast solution to the fair ranking problem using the Sinkhorn algorithm

arXiv.org Artificial Intelligence

In two-sided marketplaces such as online flea markets, recommender systems for providing consumers with personalized item rankings play a key role in promoting transactions between providers and consumers. Meanwhile, two-sided marketplaces face the problem of balancing consumer satisfaction and fairness among items to stimulate activity of item providers. Saito and Joachims (2022) devised an impact-based fair ranking method for maximizing the Nash social welfare based on fair division; however, this method, which requires solving a large-scale constrained nonlinear optimization problem, is very difficult to apply to practical-scale recommender systems. We thus propose a fast solution to the impact-based fair ranking problem. We first transform the fair ranking problem into an unconstrained optimization problem and then design a gradient ascent method that repeatedly executes the Sinkhorn algorithm. Experimental results demonstrate that our algorithm provides fair rankings of high quality and is about 1000 times faster than application of commercial optimization software.


Container pre-marshalling problem minimizing CV@R under uncertainty of ship arrival times

arXiv.org Artificial Intelligence

This paper is concerned with the container pre-marshalling problem, which involves relocating containers in the storage area so that they can be efficiently loaded onto ships without reshuffles. In reality, however, ship arrival times are affected by various external factors, which can cause the order of container retrieval to be different from the initial plan. To represent such uncertainty, we generate multiple scenarios from a multivariate probability distribution of ship arrival times. We derive a mixed-integer linear optimization model to find an optimal container layout such that the conditional value-at-risk is minimized for the number of misplaced containers responsible for reshuffles. Moreover, we devise an exact algorithm based on the cutting-plane method to handle large-scale problems. Numerical experiments using synthetic datasets demonstrate that our method can produce high-quality container layouts compared with the conventional robust optimization model. Additionally, our algorithm can speed up the computation of solving large-scale problems.


Privacy-preserving recommender system using the data collaboration analysis for distributed datasets

arXiv.org Artificial Intelligence

In order to provide high-quality recommendations for users, it is desirable to share and integrate multiple datasets held by different parties. However, when sharing such distributed datasets, we need to protect personal and confidential information contained in the datasets. To this end, we establish a framework for privacy-preserving recommender systems using the data collaboration analysis of distributed datasets. Numerical experiments with two public rating datasets demonstrate that our privacy-preserving method for rating prediction can improve the prediction accuracy for distributed datasets. This study opens up new possibilities for privacy-preserving techniques in recommender systems.


Predicting Online Item-choice Behavior: A Shape-restricted Regression Perspective

arXiv.org Artificial Intelligence

This paper examines the relationship between user pageview (PV) histories and their item-choice behavior on an e-commerce website. We focus on PV sequences, which represent time series of the number of PVs for each user--item pair. We propose a shape-restricted optimization model that accurately estimates item-choice probabilities for all possible PV sequences. This model imposes monotonicity constraints on item-choice probabilities by exploiting partial orders for PV sequences, according to the recency and frequency of a user's previous PVs. To improve the computational efficiency of our optimization model, we devise efficient algorithms for eliminating all redundant constraints according to the transitivity of the partial orders. Experimental results using real-world clickstream data demonstrate that our method achieves higher prediction performance than that of a state-of-the-art optimization model and common machine learning methods.


Exact Clustering via Integer Programming and Maximum Satisfiability

AAAI Conferences

We consider the following general graph clustering problem: given a complete undirected graph G=(V,E,c) with an edge weight function c:E->Q, we are asked to find a partition C of V that maximizes the sum of edge weights within the clusters in C. Owing to its high generality, this problem has a wide variety of real-world applications, including correlation clustering, group technology, and community detection. In this study, we investigate the design of mathematical programming formulations and constraint satisfaction formulations for the problem. First, we present a novel integer linear programming (ILP) formulation that has far fewer constraints than the standard ILP formulation by Groetschel and Wakabayashi (1989). Second, we propose an ILP-based exact algorithm that solves an ILP problem obtained by modifying our above ILP formulation and then performs simple post-processing to produce an optimal solution to the original problem. Third, we present maximum satisfiability (MaxSAT) counterparts of both our ILP formulation and ILP-based exact algorithm. Computational experiments using well-known real-world datasets demonstrate that our ILP-based approaches and their MaxSAT counterparts are highly effective in terms of both memory efficiency and computation time.