Goto

Collaborating Authors

 Su, Bing


Explicitly Modeling Universality into Self-Supervised Learning

arXiv.org Artificial Intelligence

The goal of universality in self-supervised learning (SSL) is to learn universal representations from unlabeled data and achieve excellent performance on all samples and tasks. However, these methods lack explicit modeling of the universality in the learning objective, and the related theoretical understanding remains limited. This may cause models to overfit in data-scarce situations and generalize poorly in real life. To address these issues, we provide a theoretical definition of universality in SSL, which constrains both the learning and evaluation universality of the SSL models from the perspective of discriminability, transferability, and generalization. Then, we propose a $\sigma$-measurement to help quantify the score of one SSL model's universality. Based on the definition and measurement, we propose a general SSL framework, called GeSSL, to explicitly model universality into SSL. It introduces a self-motivated target based on $\sigma$-measurement, which enables the model to find the optimal update direction towards universality. Extensive theoretical and empirical evaluations demonstrate the superior performance of GeSSL.


Dynamic Prompt Optimizing for Text-to-Image Generation

arXiv.org Artificial Intelligence

Text-to-image generative models, specifically those based on diffusion models like Imagen and Stable Diffusion, have made substantial advancements. Recently, there has been a surge of interest in the delicate refinement of text prompts. Users assign weights or alter the injection time steps of certain words in the text prompts to improve the quality of generated images. However, the success of fine-control prompts depends on the accuracy of the text prompts and the careful selection of weights and time steps, which requires significant manual intervention. To address this, we introduce the \textbf{P}rompt \textbf{A}uto-\textbf{E}diting (PAE) method. Besides refining the original prompts for image generation, we further employ an online reinforcement learning strategy to explore the weights and injection time steps of each word, leading to the dynamic fine-control prompts. The reward function during training encourages the model to consider aesthetic score, semantic consistency, and user preferences. Experimental results demonstrate that our proposed method effectively improves the original prompts, generating visually more appealing images while maintaining semantic alignment. Code is available at https://github.com/Mowenyii/PAE.


Spatio-Temporal Branching for Motion Prediction using Motion Increments

arXiv.org Artificial Intelligence

Human motion prediction (HMP) has emerged as a popular research topic due to its diverse applications, but it remains a challenging task due to the stochastic and aperiodic nature of future poses. Traditional methods rely on hand-crafted features and machine learning techniques, which often struggle to model the complex dynamics of human motion. Recent deep learning-based methods have achieved success by learning spatio-temporal representations of motion, but these models often overlook the reliability of motion data. Additionally, the temporal and spatial dependencies of skeleton nodes are distinct. The temporal relationship captures motion information over time, while the spatial relationship describes body structure and the relationships between different nodes. In this paper, we propose a novel spatio-temporal branching network using incremental information for HMP, which decouples the learning of temporal-domain and spatial-domain features, extracts more motion information, and achieves complementary cross-domain knowledge learning through knowledge distillation. Our approach effectively reduces noise interference and provides more expressive information for characterizing motion by separately extracting temporal and spatial features. We evaluate our approach on standard HMP benchmarks and outperform state-of-the-art methods in terms of prediction accuracy.


MetaMask: Revisiting Dimensional Confounder for Self-Supervised Learning

arXiv.org Artificial Intelligence

As a successful approach to self-supervised learning, contrastive learning aims to learn invariant information shared among distortions of the input sample. While contrastive learning has yielded continuous advancements in sampling strategy and architecture design, it still remains two persistent defects: the interference of task-irrelevant information and sample inefficiency, which are related to the recurring existence of trivial constant solutions. From the perspective of dimensional analysis, we find out that the dimensional redundancy and dimensional confounder are the intrinsic issues behind the phenomena, and provide experimental evidence to support our viewpoint. We further propose a simple yet effective approach MetaMask, short for the dimensional Mask learned by Meta-learning, to learn representations against dimensional redundancy and confounder. MetaMask adopts the redundancy-reduction technique to tackle the dimensional redundancy issue and innovatively introduces a dimensional mask to reduce the gradient effects of specific dimensions containing the confounder, which is trained by employing a meta-learning paradigm with the objective of improving the performance of masked representations on a typical self-supervised task. We provide solid theoretical analyses to prove MetaMask can obtain tighter risk bounds for downstream classification compared to typical contrastive methods. Empirically, our method achieves state-of-the-art performance on various benchmarks.


Synthesizing Long-Term Human Motions with Diffusion Models via Coherent Sampling

arXiv.org Artificial Intelligence

Text-to-motion generation has gained increasing attention, but most existing methods are limited to generating short-term motions that correspond to a single sentence describing a single action. However, when a text stream describes a sequence of continuous motions, the generated motions corresponding to each sentence may not be coherently linked. Existing long-term motion generation methods face two main issues. Firstly, they cannot directly generate coherent motions and require additional operations such as interpolation to process the generated actions. Secondly, they generate subsequent actions in an autoregressive manner without considering the influence of future actions on previous ones. To address these issues, we propose a novel approach that utilizes a past-conditioned diffusion model with two optional coherent sampling methods: Past Inpainting Sampling and Compositional Transition Sampling. Past Inpainting Sampling completes subsequent motions by treating previous motions as conditions, while Compositional Transition Sampling models the distribution of the transition as the composition of two adjacent motions guided by different text prompts. Our experimental results demonstrate that our proposed method is capable of generating compositional and coherent long-term 3D human motions controlled by a user-instructed long text stream. The code is available at \href{https://github.com/yangzhao1230/PCMDM}{https://github.com/yangzhao1230/PCMDM}.


Atomic and Subgraph-aware Bilateral Aggregation for Molecular Representation Learning

arXiv.org Artificial Intelligence

Molecular representation learning is a crucial task in predicting molecular properties. Molecules are often modeled as graphs where atoms and chemical bonds are represented as nodes and edges, respectively, and Graph Neural Networks (GNNs) have been commonly utilized to predict atom-related properties, such as reactivity and solubility. However, functional groups (subgraphs) are closely related to some chemical properties of molecules, such as efficacy, and metabolic properties, which cannot be solely determined by individual atoms. In this paper, we introduce a new model for molecular representation learning called the Atomic and Subgraph-aware Bilateral Aggregation (ASBA), which addresses the limitations of previous atom-wise and subgraph-wise models by incorporating both types of information. ASBA consists of two branches, one for atom-wise information and the other for subgraph-wise information. Considering existing atom-wise GNNs cannot properly extract invariant subgraph features, we propose a decomposition-polymerization GNN architecture for the subgraph-wise branch. Furthermore, we propose cooperative node-level and graph-level self-supervised learning strategies for ASBA to improve its generalization. Our method offers a more comprehensive way to learn representations for molecular property prediction and has broad potential in drug and material discovery applications. Extensive experiments have demonstrated the effectiveness of our method.


Information Theory-Guided Heuristic Progressive Multi-View Coding

arXiv.org Artificial Intelligence

Multi-view representation learning captures comprehensive information from multiple views of a shared context. Recent works intuitively apply contrastive learning (CL) to learn representations, regarded as a pairwise manner, which is still scalable: view-specific noise is not filtered in learning view-shared representations; the fake negative pairs, where the negative terms are actually within the same class as the positive, and the real negative pairs are coequally treated; and evenly measuring the similarities between terms might interfere with optimization. Importantly, few works research the theoretical framework of generalized self-supervised multi-view learning, especially for more than two views. To this end, we rethink the existing multi-view learning paradigm from the information theoretical perspective and then propose a novel information theoretical framework for generalized multi-view learning. Guided by it, we build a multi-view coding method with a three-tier progressive architecture, namely Information theory-guided heuristic Progressive Multi-view Coding (IPMC). In the distribution-tier, IPMC aligns the distribution between views to reduce view-specific noise. In the set-tier, IPMC builds self-adjusted pools for contrasting, which utilizes a view filter to adaptively modify the pools. Lastly, in the instance-tier, we adopt a designed unified loss to learn discriminative representations and reduce the gradient interference. Theoretically and empirically, we demonstrate the superiority of IPMC over state-of-the-art methods.