Not enough data to create a plot.
Try a different view from the menu above.
Stultz, Collin
Event-Based Contrastive Learning for Medical Time Series
Jeong, Hyewon, Oufattole, Nassim, Mcdermott, Matthew, Balagopalan, Aparna, Jangeesingh, Bryan, Ghassemi, Marzyeh, Stultz, Collin
In clinical practice, one often needs to identify whether a patient is at high risk of adverse outcomes after some key medical event; for example, the short-term risk of death after an admission for heart failure. This task is challenging due to the complexity, variability, and heterogeneity of longitudinal medical data, especially for individuals suffering from chronic diseases like heart failure. In this paper, we introduce Event-Based Contrastive Learning (EBCL), a method for learning embeddings of heterogeneous patient data that preserves temporal information before and after key index events. We demonstrate that EBCL produces models that yield better fine-tuning performance on critical downstream tasks for a heart failure cohort, including 30-day readmission, 1-year mortality, and 1-week length of stay, relative to other pretraining methods. Our findings also reveal that EBCL pretraining alone can effectively cluster patients with similar mortality and readmission risks, offering valuable insights for clinical decision-making and personalized patient care.
Detecting QT prolongation From a Single-lead ECG With Deep Learning
Alam, Ridwan, Aguirre, Aaron, Stultz, Collin
For a number of antiarrhythmics, drug loading requires a 3 day hospitalization with monitoring for QT prolongation. Automated QT monitoring with wearable ECG monitors would facilitate out-of-hospital care. We develop a deep learning model that infers QT intervals from ECG lead-I - the lead most often acquired from ambulatory ECG monitors - and to use this model to detect clinically meaningful QT-prolongation episodes during Dofetilide drug loading. Using 4.22 million 12-lead ECG recordings from 903.6 thousand patients at the Massachusetts General Hospital, we develop a deep learning model, QTNet, that infers QT intervals from lead-I. Over 3 million ECGs from 653 thousand patients are used to train the model and an internal-test set containing 633 thousand ECGs from 135 thousand patients was used for testing. QTNet is further evaluated on an external-validation set containing 3.1 million ECGs from 667 thousand patients at another institution. QTNet was used to detect Dofetilide-induced QT prolongation in a publicly available database (ECGRDVQ-dataset) containing ECGs from subjects enrolled in a clinical trial evaluating the effects of antiarrhythmic drugs. QTNet achieves mean absolute errors of 12.63ms (internal-test) and 12.30ms (external-validation) for estimating absolute QT intervals. The associated Pearson correlation coefficients are 0.91 (internal-test) and 0.92 (external-validation). For the ECGRDVQ-dataset, QTNet detects Dofetilide-induced QTc prolongation with 87% sensitivity and 77% specificity. The negative predictive value of the model is greater than 95% when the pre-test probability of drug-induced QTc prolongation is below 25%. Drug-induced QT prolongation risk can be tracked from ECG lead-I using deep learning.