Goto

Collaborating Authors

 Stuckenschmidt, Heiner


Reinforced Anytime Bottom Up Rule Learning for Knowledge Graph Completion

arXiv.org Artificial Intelligence

Most of todays work on knowledge graph completion is concerned with sub-symbolic approaches that focus on the concept of embedding a given graph in a low dimensional vector space. Against this trend, we propose an approach called AnyBURL that is rooted in the symbolic space. Its core algorithm is based on sampling paths, which are generalized into Horn rules. Previously published results show that the prediction quality of AnyBURL is on the same level as current state of the art with the additional benefit of offering an explanation for the predicted fact. In this paper, we are concerned with two extensions of AnyBURL. Firstly, we change AnyBURLs interpretation of rules from $\Theta$-subsumption into $\Theta$-subsumption under Object Identity. Secondly, we introduce reinforcement learning to better guide the sampling process. We found out that reinforcement learning helps finding more valuable rules earlier in the search process. We measure the impact of both extensions and compare the resulting approach with current state of the art approaches. Our results show that AnyBURL outperforms most sub-symbolic methods.


Marrying Uncertainty and Time in Knowledge Graphs

AAAI Conferences

The management of uncertainty is crucial when harvesting structured content from unstructured and noisy sources. Knowledge Graphs ( KGs ) are a prominent example. KGs maintain both numerical and non-numerical facts, with the support of an underlying schema. These facts are usually accompanied by a confidence score that witnesses how likely is for them to hold. Despite their popularity, most of existing KGs focus on static data thus impeding the availabilityof timewise knowledge. What is missing is a comprehensive solution for the management of uncertain and temporal data in KGs . The goal of this paper is to fill this gap. We rely on two main ingredients. The first is a numerical extension of Markov Logic Networks (MLNs) that provide the necessary underpinning to formalize the syntax and semantics of uncertain temporal KGs . The second is a set of Datalog constraints with inequalities that extend the underlying schema of the KGs and help to detect inconsistencies. From a theoretical point of view, we discuss the complexity of two important classes of queries for uncertain temporal KGs: maximuma-posteriori and conditional probability inference. Due to the hardness of these problems and the fact that MLN solvers do not scale well, we also explore the usage of Probabilistic Soft Logics (PSL) as a practical tool to support our reasoning tasks. We report on an experimental evaluation comparing the MLN and PSL approaches.


RockIt: Exploiting Parallelism and Symmetry for MAP Inference in Statistical Relational Models

AAAI Conferences

RockIt is a maximum a-posteriori (MAP) query engine for statistical relational models. MAP inference in graphical models is an optimization problem which can be compiled to integer linear programs (ILPs).We describe several advances in translating MAP queries to ILP instances and present the novel meta-algorithm cutting plane aggregation (CPA). CPA exploits local context-specific symmetries and bundles up sets of linear constraints. The resulting counting constraints lead to more compact ILPs and make the symmetry of the ground model more explicit to state-of-the-art ILP solvers. Moreover, RockIt parallelizes most parts of the MAP inference pipeline taking advantage of ubiquitous shared-memory multi-core architectures. We report on extensive experiments with Markov logic network (MLN) benchmarks showing that RockIt outperforms the state-of-the-art systems Alchemy, Markov TheBeast, and Tuffy both in terms of efficiency and quality of results.


Evaluating Ontology Matching Systems on Large, Multilingual and Real-world Test Cases

arXiv.org Artificial Intelligence

In the field of ontology matching, the most systematic evaluation of matching systems is established by the Ontology Alignment Evaluation Initiative (OAEI), which is an annual campaign for evaluating ontology matching systems organized by different groups of researchers. In this paper, we report on the results of an intermediary OAEI campaign called OAEI 2011.5. The evaluations of this campaign are divided in five tracks. Three of these tracks are new or have been improved compared to previous OAEI campaigns. Overall, we evaluated 18 matching systems. We discuss lessons learned, in terms of scalability, multilingual issues and the ability do deal with real world cases from different domains.


A Probabilistic-Logical Framework for Ontology Matching

AAAI Conferences

Ontology matching is the problem of determining correspondences between concepts, properties, and individuals of different heterogeneous ontologies. With this paper we present a novel probabilistic-logical framework for ontology matching based on Markov logic. We define the syntax and semantics and provide a formalization of the ontology matching problem within the framework. The approach has several advantages over existing methods such as ease of experimentation, incoherence mitigation during the alignment process, and the incorporation of a-priori confidence values. We show empirically that the approach is efficient and more accurate than existing matchers on an established ontology alignment benchmark dataset.