Plotting

 Stromsten, Sean


Applied Actant-Network Theory: Toward the Automated Detection of Technoscientific Emergence from Full-Text Publications and Patents

AAAI Conferences

There is growing interest in automating the detection of interesting new developments in science and technology. BAE Systems is pursuing ARBITER (Abductive Reasoning Based on Indicators and Topics of EmeRgence), a multi-disciplinary study and development effort to analyze full- text and metadata for indicators of emergent technologies and scientific fields. To define these indicators, our team has applied the primary insights of actant network theory developed within the disciplines of Science and Technology Studies and the history of technology and science to create a pragmatic theory of technoscientific emergence. Specifically, this practical theory articulates emergence in terms of the robustness of actant networks. This applied actant-network theory currently guides our definition of indicators and indicator patterns for the ARBITER system, and represents a novel contribution to the discussion of emergent technologies and fields. Several elements of our theory were validated with 15 case studies and 25 example technologies.




Semi-Supervised Learning with Trees

Neural Information Processing Systems

We describe a nonparametric Bayesian approach to generalizing from few labeled examples, guided by a larger set of unlabeled objects and the assumption of a latent tree-structure to the domain. The tree (or a distribution over trees) may be inferred using the unlabeled data. A prior over concepts generated by a mutation process on the inferred tree(s) allows efficient computation of the optimal Bayesian classification function fromthe labeled examples. We test our approach on eight real-world datasets.