Not enough data to create a plot.
Try a different view from the menu above.
Strathmann, Heiko
A Kernel Test of Goodness of Fit
Chwialkowski, Kacper, Strathmann, Heiko, Gretton, Arthur
We propose a nonparametric statistical test for goodness-of-fit: given a set of samples, the test determines how likely it is that these were generated from a target density function. The measure of goodness-of-fit is a divergence constructed via Stein's method using functions from a Reproducing Kernel Hilbert Space. Our test statistic is based on an empirical estimate of this divergence, taking the form of a V-statistic in terms of the log gradients of the target density and the kernel. We derive a statistical test, both for i.i.d. and non-i.i.d. samples, where we estimate the null distribution quantiles using a wild bootstrap procedure. We apply our test to quantifying convergence of approximate Markov Chain Monte Carlo methods, statistical model criticism, and evaluating quality of fit vs model complexity in nonparametric density estimation.
Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families
Strathmann, Heiko, Sejdinovic, Dino, Livingstone, Samuel, Szabo, Zoltan, Gretton, Arthur
We propose Kernel Hamiltonian Monte Carlo (KMC), a gradient-free adaptive MCMC algorithm based on Hamiltonian Monte Carlo (HMC). On target densities where classical HMC is not an option due to intractable gradients, KMC adaptively learns the target's gradient structure by fitting an exponential family model in a Reproducing Kernel Hilbert Space. Computational costs are reduced by two novel efficient approximations to this gradient. While being asymptotically exact, KMC mimics HMC in terms of sampling efficiency, and offers substantial mixing improvements over state-of-the-art gradient free samplers. We support our claims with experimental studies on both toy and real-world applications, including Approximate Bayesian Computation and exact-approximate MCMC.
On Russian Roulette Estimates for Bayesian Inference with Doubly-Intractable Likelihoods
Lyne, Anne-Marie, Girolami, Mark, Atchadรฉ, Yves, Strathmann, Heiko, Simpson, Daniel
A large number of statistical models are "doubly-intractable": the likelihood normalising term, which is a function of the model parameters, is intractable, as well as the marginal likelihood (model evidence). This means that standard inference techniques to sample from the posterior, such as Markov chain Monte Carlo (MCMC), cannot be used. Examples include, but are not confined to, massive Gaussian Markov random fields, autologistic models and Exponential random graph models. A number of approximate schemes based on MCMC techniques, Approximate Bayesian computation (ABC) or analytic approximations to the posterior have been suggested, and these are reviewed here. Exact MCMC schemes, which can be applied to a subset of doubly-intractable distributions, have also been developed and are described in this paper. As yet, no general method exists which can be applied to all classes of models with doubly-intractable posteriors. In addition, taking inspiration from the Physics literature, we study an alternative method based on representing the intractable likelihood as an infinite series. Unbiased estimates of the likelihood can then be obtained by finite time stochastic truncation of the series via Russian Roulette sampling, although the estimates are not necessarily positive. Results from the Quantum Chromodynamics literature are exploited to allow the use of possibly negative estimates in a pseudo-marginal MCMC scheme such that expectations with respect to the posterior distribution are preserved. The methodology is reviewed on well-known examples such as the parameters in Ising models, the posterior for Fisher-Bingham distributions on the $d$-Sphere and a large-scale Gaussian Markov Random Field model describing the Ozone Column data. This leads to a critical assessment of the strengths and weaknesses of the methodology with pointers to ongoing research.
Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families
Strathmann, Heiko, Sejdinovic, Dino, Livingstone, Samuel, Szabo, Zoltan, Gretton, Arthur
We propose Kernel Hamiltonian Monte Carlo (KMC), a gradient-free adaptive MCMC algorithm based on Hamiltonian Monte Carlo (HMC). On target densities where classical HMC is not an option due to intractable gradients, KMC adaptively learns the target's gradient structure by fitting an exponential family model in a Reproducing Kernel Hilbert Space. Computational costs are reduced by two novel efficient approximations to this gradient. While being asymptotically exact, KMC mimics HMC in terms of sampling efficiency, and offers substantial mixing improvements over state-of-the-art gradient free samplers. We support our claims with experimental studies on both toy and real-world applications, including Approximate Bayesian Computation and exact-approximate MCMC.
Unbiased Bayes for Big Data: Paths of Partial Posteriors
Strathmann, Heiko, Sejdinovic, Dino, Girolami, Mark
A key quantity of interest in Bayesian inference are expectations of functions with respect to a posterior distribution. Markov Chain Monte Carlo is a fundamental tool to consistently compute these expectations via averaging samples drawn from an approximate posterior. However, its feasibility is being challenged in the era of so called Big Data as all data needs to be processed in every iteration. Realising that such simulation is an unnecessarily hard problem if the goal is estimation, we construct a computationally scalable methodology that allows unbiased estimation of the required expectations -- without explicit simulation from the full posterior. The scheme's variance is finite by construction and straightforward to control, leading to algorithms that are provably unbiased and naturally arrive at a desired error tolerance. This is achieved at an average computational complexity that is sub-linear in the size of the dataset and its free parameters are easy to tune. We demonstrate the utility and generality of the methodology on a range of common statistical models applied to large-scale benchmark and real-world datasets.
Kernel Adaptive Metropolis-Hastings
Sejdinovic, Dino, Strathmann, Heiko, Garcia, Maria Lomeli, Andrieu, Christophe, Gretton, Arthur
A Kernel Adaptive Metropolis-Hastings algorithm is introduced, for the purpose of sampling from a target distribution with strongly nonlinear support. The algorithm embeds the trajectory of the Markov chain into a reproducing kernel Hilbert space (RKHS), such that the feature space covariance of the samples informs the choice of proposal. The procedure is computationally efficient and straightforward to implement, since the RKHS moves can be integrated out analytically: our proposal distribution in the original space is a normal distribution whose mean and covariance depend on where the current sample lies in the support of the target distribution, and adapts to its local covariance structure. Furthermore, the procedure requires neither gradients nor any other higher order information about the target, making it particularly attractive for contexts such as Pseudo-Marginal MCMC. Kernel Adaptive Metropolis-Hastings outperforms competing fixed and adaptive samplers on multivariate, highly nonlinear target distributions, arising in both real-world and synthetic examples. Code may be downloaded at https://github.com/karlnapf/kameleon-mcmc.
Optimal kernel choice for large-scale two-sample tests
Gretton, Arthur, Sejdinovic, Dino, Strathmann, Heiko, Balakrishnan, Sivaraman, Pontil, Massimiliano, Fukumizu, Kenji, Sriperumbudur, Bharath K.
Abstract Given samples from distributions $p$ and $q$, a two-sample test determines whether to reject the null hypothesis that $p=q$, based on the value of a test statistic measuring the distance between the samples. One choice of test statistic is the maximum mean discrepancy (MMD), which is a distance between embeddings of the probability distributions in a reproducing kernel Hilbert space. The kernel used in obtaining these embeddings is thus critical in ensuring the test has high power, and correctly distinguishes unlike distributions with high probability. A means of parameter selection for the two-sample test based on the MMD is proposed. For a given test level (an upper bound on the probability of making a Type I error), the kernel is chosen so as to maximize the test power, and minimize the probability of making a Type II error. The test statistic, test threshold, and optimization over the kernel parameters are obtained with cost linear in the sample size. These properties make the kernel selection and test procedures suited to data streams, where the observations cannot all be stored in memory. In experiments, the new kernel selection approach yields a more powerful test than earlier kernel selection heuristics.