Goto

Collaborating Authors

 Stoica, Petre


Data Consistency Approach to Model Validation

arXiv.org Machine Learning

In scientific inference problems, the underlying statistical modeling assumptions have a crucial impact on the end results. There exist, however, only a few automatic means for validating these fundamental modelling assumptions. The contribution in this paper is a general criterion to evaluate the consistency of a set of statistical models with respect to observed data. This is achieved by automatically gauging the models' ability to generate data that is similar to the observed data. Importantly, the criterion follows from the model class itself and is therefore directly applicable to a broad range of inference problems with varying data types. The proposed data consistency criterion is illustrated and evaluated using three synthetic and two real data sets.


Model-Robust Counterfactual Prediction Method

arXiv.org Machine Learning

We develop a method for assessing counterfactual predictions with multiple groups. It is tuning-free and operational in high-dimensional covariate scenarios, with a runtime that scales linearly in the number of datapoints. The computational efficiency is leveraged to produce valid confidence intervals using the conformal prediction approach. The method is model-robust in that it enables inferences from observational data even when the data model is misspecified. The approach is illustrated using both real and synthetic datasets.


Recursive nonlinear-system identification using latent variables

arXiv.org Machine Learning

In this paper we develop a method for learning nonlinear systems with multiple outputs and inputs. We begin by modelling the errors of a nominal predictor of the system using a latent variable framework. Then using the maximum likelihood principle we derive a criterion for learning the model. The resulting optimization problem is tackled using a majorization-minimization approach. Finally, we develop a convex majorization technique and show that it enables a recursive identification method. The method learns parsimonious predictive models and is tested on both synthetic and real nonlinear systems.


Online Learning for Distribution-Free Prediction

arXiv.org Machine Learning

We develop an online learning method for prediction, which is important in problems with large and/or streaming data sets. We formulate the learning approach using a covariance-fitting methodology, and show that the resulting predictor has desirable computational and distribution-free properties: It is implemented online with a runtime that scales linearly in the number of samples; has a constant memory requirement; avoids local minima problems; and prunes away redundant feature dimensions without relying on restrictive assumptions on the data distribution. In conjunction with the split conformal approach, it also produces distribution-free prediction confidence intervals in a computationally efficient manner. The method is demonstrated on both real and synthetic datasets.


Prediction performance after learning in Gaussian process regression

arXiv.org Machine Learning

This paper considers the quantification of the prediction performance in Gaussian process regression. The standard approach is to base the prediction error bars on the theoretical predictive variance, which is a lower bound on the mean square-error (MSE). This approach, however, does not take into account that the statistical model is learned from the data. We show that this omission leads to a systematic underestimation of the prediction errors. Starting from a generalization of the Cram\'er-Rao bound, we derive a more accurate MSE bound which provides a measure of uncertainty for prediction of Gaussian processes. The improved bound is easily computed and we illustrate it using synthetic and real data examples. of uncertainty for prediction of Gaussian processes and illustrate it using synthetic and real data examples.