Stober, Sebastian
PredProp: Bidirectional Stochastic Optimization with Precision Weighted Predictive Coding
Ofner, André, Stober, Sebastian
We present PredProp, a method for bidirectional, parallel and local optimisation of weights, activities and precision in neural networks. PredProp jointly addresses inference and learning, scales learning rates dynamically and weights gradients by the curvature of the loss function by optimizing prediction error precision. PredProp optimizes network parameters with Stochastic Gradient Descent and error forward propagation based strictly on prediction errors and variables locally available to each layer. Neighboring layers optimise shared activity variables so that prediction errors can propagate forward in the network, while predictions propagate backwards. This process minimises the negative Free Energy, or evidence lower bound of the entire network. We show that networks trained with PredProp resemble gradient based predictive coding when the number of weights between neighboring activity variables is one. In contrast to related work, PredProp generalizes towards backward connections of arbitrary depth and optimizes precision for any deep network architecture. Due to the analogy between prediction error precision and the Fisher information for each layer, PredProp implements a form of Natural Gradient Descent. When optimizing DNN models, layer-wise PredProp renders the model a bidirectional predictive coding network. Alternatively DNNs can parameterize the weights between two activity variables. We evaluate PredProp for dense DNNs on simple inference, learning and combined tasks. We show that, without an explicit sampling step in the network, PredProp implements a form of variational inference that allows to learn disentangled embeddings from low amounts of data and leave evaluation on more complex tasks and datasets to future work.
Hybrid Active Inference
Ofner, André, Stober, Sebastian
We describe a framework of hybrid cognition by formulating a hybrid cognitive agent that performs hierarchical active inference across a human and a machine part. We suggest that, in addition to enhancing human cognitive functions with an intelligent and adaptive interface, integrated cognitive processing could accelerate emergent properties within artificial intelligence. To establish this, a machine learning part learns to integrate into human cognition by explaining away multi-modal sensory measurements from the environment and physiology simultaneously with the brain signal. With ongoing training, the amount of predictable brain signal increases. This lends the agent the ability to self-supervise on increasingly high levels of cognitive processing in order to further minimize surprise in predicting the brain signal. Furthermore, with increasing level of integration, the access to sensory information about environment and physiology is substituted with access to their representation in the brain. While integrating into a joint embodiment of human and machine, human action and perception are treated as the machine's own. The framework can be implemented with invasive as well as non-invasive sensors for environment, body and brain interfacing. Online and offline training with different machine learning approaches are thinkable. Building on previous research on shared representation learning, we suggest a first implementation leading towards hybrid active inference with non-invasive brain interfacing and state of the art probabilistic deep learning methods. We further discuss how implementation might have effect on the meta-cognitive abilities of the described agent and suggest that with adequate implementation the machine part can continue to execute and build upon the learned cognitive processes autonomously.
Transfer Learning for Speech Recognition on a Budget
Kunze, Julius, Kirsch, Louis, Kurenkov, Ilia, Krug, Andreas, Johannsmeier, Jens, Stober, Sebastian
End-to-end training of automated speech recognition (ASR) systems requires massive data and compute resources. We explore transfer learning based on model adaptation as an approach for training ASR models under constrained GPU memory, throughput and training data. We conduct several systematic experiments adapting a Wav2Letter convolutional neural network originally trained for English ASR to the German language. We show that this technique allows faster training on consumer-grade resources while requiring less training data in order to achieve the same accuracy, thereby lowering the cost of training ASR models in other languages. Model introspection revealed that small adaptations to the network's weights were sufficient for good performance, especially for inner layers.
Using Convolutional Neural Networks to Recognize Rhythm Stimuli from Electroencephalography Recordings
Stober, Sebastian, Cameron, Daniel J., Grahn, Jessica A.
Electroencephalography (EEG) recordings of rhythm perception might contain enough information to distinguish different rhythm types/genres or even identify the rhythms themselves. We apply convolutional neural networks (CNNs) to analyze and classify EEG data recorded within a rhythm perception study in Kigali, Rwanda which comprises 12 East African and 12 Western rhythmic stimuli - each presented in a loop for 32 seconds to 13 participants. We investigate the impact of the data representation and the pre-processing steps for this classification tasks and compare different network structures. Using CNNs, we are able to recognize individual rhythms from the EEG with a mean classification accuracy of 24.4% (chance level 4.17%) over all subjects by looking at less than three seconds from a single channel. Aggregating predictions for multiple channels, a mean accuracy of up to 50% can be achieved for individual subjects.