Stenetorp, Pontus
Learning Reasoning Strategies in End-to-End Differentiable Proving
Minervini, Pasquale, Riedel, Sebastian, Stenetorp, Pontus, Grefenstette, Edward, Rocktäschel, Tim
Attempts to render deep learning models interpretable, data-efficient, and robust have seen some success through hybridisation with rule-based systems, for example, in Neural Theorem Provers (NTPs). These neuro-symbolic models can induce interpretable rules and learn representations from data via back-propagation, while providing logical explanations for their predictions. However, they are restricted by their computational complexity, as they need to consider all possible proof paths for explaining a goal, thus rendering them unfit for large-scale applications. We present Conditional Theorem Provers (CTPs), an extension to NTPs that learns an optimal rule selection strategy via gradient-based optimisation. We show that CTPs are scalable and yield state-of-the-art results on the CLUTRR dataset, which tests systematic generalisation of neural models by learning to reason over smaller graphs and evaluating on larger ones. Finally, CTPs show better link prediction results on standard benchmarks in comparison with other neural-symbolic models, while being explainable. All source code and datasets are available online, at https://github.com/uclnlp/ctp.
Question and Answer Test-Train Overlap in Open-Domain Question Answering Datasets
Lewis, Patrick, Stenetorp, Pontus, Riedel, Sebastian
Ideally Open-Domain Question Answering models should exhibit a number of competencies, ranging from simply memorizing questions seen at training time, to answering novel question formulations with answers seen during training, to generalizing to completely novel questions with novel answers. However, single aggregated test set scores do not show the full picture of what capabilities models truly have. In this work, we perform a detailed study of the test sets of three popular open-domain benchmark datasets with respect to these competencies. We find that 60-70% of test-time answers are also present somewhere in the training sets. We also find that 30% of test-set questions have a near-duplicate paraphrase in their corresponding training sets. Using these findings, we evaluate a variety of popular open-domain models to obtain greater insight into what extent they can actually generalize, and what drives their overall performance. We find that all models perform dramatically worse on questions that cannot be memorized from training sets, with a mean absolute performance difference of 63% between repeated and non-repeated data. Finally we show that simple nearest-neighbor models out-perform a BART closed-book QA model, further highlighting the role that training set memorization plays in these benchmarks
Undersensitivity in Neural Reading Comprehension
Welbl, Johannes, Minervini, Pasquale, Bartolo, Max, Stenetorp, Pontus, Riedel, Sebastian
Current reading comprehension models generalise well to in-distribution test sets, yet perform poorly on adversarially selected inputs. Most prior work on adversarial inputs studies oversensitivity: semantically invariant text perturbations that cause a model's prediction to change when it should not. In this work we focus on the complementary problem: excessive prediction undersensitivity, where input text is meaningfully changed but the model's prediction does not, even though it should. We formulate a noisy adversarial attack which searches among semantic variations of the question for which a model erroneously predicts the same answer, and with even higher probability. Despite comprising unanswerable questions, both SQuAD2.0 and NewsQA models are vulnerable to this attack. This indicates that although accurate, models tend to rely on spurious patterns and do not fully consider the information specified in a question. We experiment with data augmentation and adversarial training as defences, and find that both substantially decrease vulnerability to attacks on held out data, as well as held out attack spaces. Addressing undersensitivity also improves results on AddSent and AddOneSent, and models furthermore generalise better when facing train/evaluation distribution mismatch: they are less prone to overly rely on predictive cues present only in the training set, and outperform a conventional model by as much as 10.9% F1.
On the Importance of Strong Baselines in Bayesian Deep Learning
Mukhoti, Jishnu, Stenetorp, Pontus, Gal, Yarin
Like all sub-fields of machine learning Bayesian Deep Learning is driven by empirical validation of its theoretical proposals. Given the many aspects of an experiment it is always possible that minor or even major experimental flaws can slip by both authors and reviewers. One of the most popular experiments used to evaluate approximate inference techniques is the regression experiment on UCI datasets. However, in this experiment, models which have been trained to convergence have often been compared with baselines trained only for a fixed number of iterations. We find that a well-established baseline, Monte Carlo dropout, when evaluated under the same experimental settings shows significant improvements. In fact, the baseline outperforms or performs competitively with methods that claimed to be superior to the very same baseline method when they were introduced. Hence, by exposing this flaw in experimental procedure, we highlight the importance of using identical experimental setups to evaluate, compare, and benchmark methods in Bayesian Deep Learning.
Application of Clinical Concept Embeddings for Heart Failure Prediction in UK EHR data
Denaxas, Spiros, Stenetorp, Pontus, Riedel, Sebastian, Pikoula, Maria, Dobson, Richard, Hemingway, Harry
Electronic health records (EHR) are increasingly being used for constructing disease risk prediction models. Feature engineering in EHR data however is challenging due to their highly dimensional and heterogeneous nature. Low-dimensional representations of EHR data can potentially mitigate these challenges. In this paper, we use global vectors (GloVe) to learn word embeddings for diagnoses and procedures recorded using 13 million ontology terms across 2.7 million hospitalisations in national UK EHR. We demonstrate the utility of these embeddings by evaluating their performance in identifying patients which are at higher risk of being hospitalised for congestive heart failure. Our findings indicate that embeddings can enable the creation of robust EHR-derived disease risk prediction models and address some the limitations associated with manual clinical feature engineering.
Wronging a Right: Generating Better Errors to Improve Grammatical Error Detection
Kasewa, Sudhanshu, Stenetorp, Pontus, Riedel, Sebastian
Grammatical error correction, like other machine learning tasks, greatly benefits from large quantities of high quality training data, which is typically expensive to produce. While writing a program to automatically generate realistic grammatical errors would be difficult, one could learn the distribution of naturallyoccurring errors and attempt to introduce them into other datasets. Initial work on inducing errors in this way using statistical machine translation has shown promise; we investigate cheaply constructing synthetic samples, given a small corpus of human-annotated data, using an off-the-rack attentive sequence-to-sequence model and a straight-forward post-processing procedure. Our approach yields error-filled artificial data that helps a vanilla bi-directional LSTM to outperform the previous state of the art at grammatical error detection, and a previously introduced model to gain further improvements of over 5% $F_{0.5}$ score. When attempting to determine if a given sentence is synthetic, a human annotator at best achieves 39.39 $F_1$ score, indicating that our model generates mostly human-like instances.
Jack the Reader - A Machine Reading Framework
Weissenborn, Dirk, Minervini, Pasquale, Dettmers, Tim, Augenstein, Isabelle, Welbl, Johannes, Rocktäschel, Tim, Bošnjak, Matko, Mitchell, Jeff, Demeester, Thomas, Stenetorp, Pontus, Riedel, Sebastian
Many Machine Reading and Natural Language Understanding tasks require reading supporting text in order to answer questions. For example, in Question Answering, the supporting text can be newswire or Wikipedia articles; in Natural Language Inference, premises can be seen as the supporting text and hypotheses as questions. Providing a set of useful primitives operating in a single framework of related tasks would allow for expressive modelling, and easier model comparison and replication. To that end, we present Jack the Reader (Jack), a framework for Machine Reading that allows for quick model prototyping by component reuse, evaluation of new models on existing datasets as well as integrating new datasets and applying them on a growing set of implemented baseline models. Jack is currently supporting (but not limited to) three tasks: Question Answering, Natural Language Inference, and Link Prediction. It is developed with the aim of increasing research efficiency and code reuse.
Constructing Datasets for Multi-hop Reading Comprehension Across Documents
Welbl, Johannes, Stenetorp, Pontus, Riedel, Sebastian
Most Reading Comprehension methods limit themselves to queries which can be answered using a single sentence, paragraph, or document. Enabling models to combine disjoint pieces of textual evidence would extend the scope of machine comprehension methods, but currently there exist no resources to train and test this capability. We propose a novel task to encourage the development of models for text understanding across multiple documents and to investigate the limits of existing methods. In our task, a model learns to seek and combine evidence - effectively performing multi-hop (alias multi-step) inference. We devise a methodology to produce datasets for this task, given a collection of query-answer pairs and thematically linked documents. Two datasets from different domains are induced, and we identify potential pitfalls and devise circumvention strategies. We evaluate two previously proposed competitive models and find that one can integrate information across documents. However, both models struggle to select relevant information, as providing documents guaranteed to be relevant greatly improves their performance. While the models outperform several strong baselines, their best accuracy reaches 42.9% compared to human performance at 74.0% - leaving ample room for improvement.
Convolutional 2D Knowledge Graph Embeddings
Dettmers, Tim (Università della Svizzera italiana) | Minervini, Pasquale (University College London) | Stenetorp, Pontus (University College London) | Riedel, Sebastian (University College London)
Link prediction for knowledge graphs is the task of predicting missing relationships between entities. Previous work on link prediction has focused on shallow, fast models which can scale to large knowledge graphs. However, these models learn less expressive features than deep, multi-layer models — which potentially limits performance. In this work we introduce ConvE, a multi-layer convolutional network model for link prediction, and report state-of-the-art results for several established datasets. We also show that the model is highly parameter efficient, yielding the same performance as DistMult and R-GCN with 8x and 17x fewer parameters. Analysis of our model suggests that it is particularly effective at modelling nodes with high indegree — which are common in highly-connected, complex knowledge graphs such as Freebase and YAGO3. In addition, it has been noted that the WN18 and FB15k datasets suffer from test set leakage, due to inverse relations from the training set being present in the test set — however, the extent of this issue has so far not been quantified. We find this problem to be severe: a simple rule-based model can achieve state-of-the-art results on both WN18 and FB15k. To ensure that models are evaluated on datasets where simply exploiting inverse relations cannot yield competitive results, we investigate and validate several commonly used datasets — deriving robust variants where necessary. We then perform experiments on these robust datasets for our own and several previously proposed models, and find that ConvE achieves state-of-the-art Mean Reciprocal Rank across all datasets.
Learning to Reason With Adaptive Computation
Neumann, Mark, Stenetorp, Pontus, Riedel, Sebastian
Multi-hop inference is necessary for machine learning systems to successfully solve tasks such as Recognising Textual Entailment and Machine Reading. In this work, we demonstrate the effectiveness of adaptive computation for learning the number of inference steps required for examples of different complexity and that learning the correct number of inference steps is difficult. We introduce the first model involving Adaptive Computation Time which provides a small performance benefit on top of a similar model without an adaptive component as well as enabling considerable insight into the reasoning process of the model.