Plotting

 Stalidis, Panagiotis


Examining Deep Learning Architectures for Crime Classification and Prediction

arXiv.org Machine Learning

Abstract--In this paper, a detailed study on crime classification and prediction using deep learning architectures is presented. We examine the effectiveness of deep learning algorithms on this domain and provide recommendations for designing and training deep learning systems for predicting crime areas, using open data from police reports. Having as training data time-series of crime types per location, a comparative study of 10 state-of-the-art methods against 3 different deep learning configurations is conducted. In our experiments with five publicly available datasets, we demonstrate that the deep learning-based methods consistently outperform the existing best-performing methods. Moreover, we evaluate the effectiveness of different parameters in the deep learning architectures and give insights for configuring them in order to achieve improved performance in crime classification and finally crime prediction. REDICTIVE policing is the use of analytical techniques to identify either likely places of future crime scenes or past crime perpetrators, by applying statistical predictions [29]. As a crime typically involves a perpetrator and a target and occurs at a certain place and time, techniques of predictive policing need to answer: a) who will commit a crime, b) who will be offended, c) what type of crime, d) in which location and e) at what time a new crime will take place. This work does not focus on the victim and the offender, but on the prediction of occurrence of a certain crime type per location and time using past data. The ultimate goal, in a policing context, is the selection of the top areas in the city for the prioritization of law enforcement resources per department. One of the most challenging issues of police departments is to have accurate crime forecasts to dynamically deploy patrols and other resources so as to improve deterring of crime occurrence and police response times. Routine activity theory [8] suggests that most crimes take place when three conditions are met: a motivated offender, a suitable victim and lack of victim protection. The rational choice theory [9], suggests that prospective criminal weights the gain of successfully committing the crime against the probability of being caught and makes a rational choice whether to actually commit the crime or not. Both theories agree that a crime takes place when a person willing to commit it has an opportunity to do so. Daras are with the Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece.


Machine Learning Sentiment Prediction based on Hybrid Document Representation

arXiv.org Machine Learning

Automated sentiment analysis and opinion mining is a complex process concerning the extraction of useful subjective information from text. The explosion of user generated content on the Web, especially the fact that millions of users, on a daily basis, express their opinions on products and services to blogs, wikis, social networks, message boards, etc., render the reliable, automated export of sentiments and opinions from unstructured text crucial for several commercial applications. In this paper, we present a novel hybrid vectorization approach for textual resources that combines a weighted variant of the popular Word2Vec representation (based on Term Frequency-Inverse Document Frequency) representation and with a Bag- of-Words representation and a vector of lexicon-based sentiment values. The proposed text representation approach is assessed through the application of several machine learning classification algorithms on a dataset that is used extensively in literature for sentiment detection. The classification accuracy derived through the proposed hybrid vectorization approach is higher than when its individual components are used for text represenation, and comparable with state-of-the-art sentiment detection methodologies.