Plotting

 Stadelmann, Thilo


Automated Machine Learning in Practice: State of the Art and Recent Results

arXiv.org Artificial Intelligence

A main driver behind the digitization of industry and society is the belief that data-driven model building and decision making can contribute to higher degrees of automation and more informed decisions. Building such models from data often involves the application of some form of machine learning. Thus, there is an ever growing demand in work force with the necessary skill set to do so. This demand has given rise to a new research topic concerned with fitting machine learning models fully automatically - AutoML. This paper gives an overview of the state of the art in AutoML with a focus on practical applicability in a business context, and provides recent benchmark results on the most important AutoML algorithms.


Deep Learning in the Wild

arXiv.org Artificial Intelligence

Deep learning with neural networks is applied by an increasing number of people outside of classic research environments, due to the vast success of the methodology on a wide range of machine perception tasks. While this interest is fueled by beautiful success stories, practical work in deep learning on novel tasks without existing baselines remains challenging. This paper explores the specific challenges arising in the realm of real world tasks, based on case studies from research \& development in conjunction with industry, and extracts lessons learned from them. It thus fills a gap between the publication of latest algorithmic and methodical developments, and the usually omitted nitty-gritty of how to make them work. Specifically, we give insight into deep learning projects on face matching, print media monitoring, industrial quality control, music scanning, strategy game playing, and automated machine learning, thereby providing best practices for deep learning in practice.


Learning Neural Models for End-to-End Clustering

arXiv.org Machine Learning

We propose a novel end-to-end neural network architecture that, once trained, directly outputs a probabilistic clustering of a batch of input examples in one pass. It estimates a distribution over the number of clusters $k$, and for each $1 \leq k \leq k_\mathrm{max}$, a distribution over the individual cluster assignment for each data point. The network is trained in advance in a supervised fashion on separate data to learn grouping by any perceptual similarity criterion based on pairwise labels (same/different group). It can then be applied to different data containing different groups. We demonstrate promising performance on high-dimensional data like images (COIL-100) and speech (TIMIT). We call this ``learning to cluster'' and show its conceptual difference to deep metric learning, semi-supervise clustering and other related approaches while having the advantage of performing learnable clustering fully end-to-end.


Deep Watershed Detector for Music Object Recognition

arXiv.org Artificial Intelligence

Optical Music Recognition (OMR) is an important and challenging area within music information retrieval, the accurate detection of music symbols in digital images is a core functionality of any OMR pipeline. In this paper, we introduce a novel object detection method, based on synthetic energy maps and the watershed transform, called Deep Watershed Detector (DWD). Our method is specifically tailored to deal with high resolution images that contain a large number of very small objects and is therefore able to process full pages of written music. We present state-of-the-art detection results of common music symbols and show DWD's ability to work with synthetic scores equally well as on handwritten music.


AI in Switzerland

AI Magazine

Although Switzerland is a small country, it is home to many internationally renowned universities and scientific institutions. The research landscape in Switzerland is rich, and AI-related themes are investigated by many teams under diverse umbrellas. This column sheds some light on selected developments and trends on AI in Switzerland as perceived by members of the Special Interest group on Artificial Intelligence and Cognitive Science (SGAICO) organizational team, which has brought together researchers from Switzerland interested in AI and cognitive science for over 30 years.


AI in Switzerland

AI Magazine

Although Switzerland is a small country, it is home to many internationally renowned universities and scientific institutions. The research landscape in Switzerland is rich, and AI-related themes are investigated by many teams under diverse umbrellas. This column sheds some light on selected developments and trends on AI in Switzerland as perceived by members of the Special Interest group on Artificial Intelligence and Cognitive Science (SGAICO) organizational team, which has brought together researchers from Switzerland interested in AI and cognitive science for over 30 years.