Goto

Collaborating Authors

 Stachniss, Cyrill


Adaptive Path Planning for UAV-based Multi-Resolution Semantic Segmentation

arXiv.org Artificial Intelligence

In this paper, we address the problem of adaptive path planning for accurate semantic segmentation of terrain using unmanned aerial vehicles (UAVs). The usage of UAVs for terrain monitoring and remote sensing is rapidly gaining momentum due to their high mobility, low cost, and flexible deployment. However, a key challenge is planning missions to maximize the value of acquired data in large environments given flight time limitations. To address this, we propose an online planning algorithm which adapts the UAV paths to obtain high-resolution semantic segmentations necessary in areas on the terrain with fine details as they are detected in incoming images. This enables us to perform close inspections at low altitudes only where required, without wasting energy on exhaustive mapping at maximum resolution. A key feature of our approach is a new accuracy model for deep learning-based architectures that captures the relationship between UAV altitude and semantic segmentation accuracy. We evaluate our approach on the application of crop/weed segmentation in precision agriculture using real-world field data.


Robust Visual Robot Localization Across Seasons Using Network Flows

AAAI Conferences

Image-based localization is an important problem in robotics and an integral part of visual mapping and navigation systems. An approach to robustly match images to previously recorded ones must be able to cope with seasonal changes especially when it is supposed to work reliably over long periods of time. In this paper, we present a novel approach to visual localization of mobile robots in outdoor environments, which is able to deal with substantial seasonal changes. We formulate image matching as a minimum cost flow problem in a data association graph to effectively exploit sequence information. This allows us to deal with non-matching image sequences that result from temporal occlusions or from visiting new places. We present extensive experimental evaluations under substantial seasonal changes. Our approach achieves accurate matching across seasons and outperforms existing state-of-the-art methods such as FABMAP2 and SeqSLAM.