Plotting

 St-Aubin, Robert


SPUDD: Stochastic Planning using Decision Diagrams

arXiv.org Artificial Intelligence

Markov decisions processes (MDPs) are becoming increasing popular as models of decision theoretic planning. While traditional dynamic programming methods perform well for problems with small state spaces, structured methods are needed for large problems. We propose and examine a value iteration algorithm for MDPs that uses algebraic decision diagrams(ADDs) to represent value functions and policies. An MDP is represented using Bayesian networks and ADDs and dynamic programming is applied directly to these ADDs. We demonstrate our method on large MDPs (up to 63 million states) and show that significant gains can be had when compared to tree-structured representations (with up to a thirty-fold reduction in the number of nodes required to represent optimal value functions).


APRICODD: Approximate Policy Construction Using Decision Diagrams

Neural Information Processing Systems

We propose a method of approximate dynamic programming for Markov decision processes (MDPs) using algebraic decision diagrams (ADDs). We produce near-optimal value functions and policies with much lower time and space requirements than exact dynamic programming. Our method reduces the sizes of the intermediate value functions generated during value iteration by replacing the values at the terminals of the ADD with ranges of values. Our method is demonstrated on a class of large MDPs (with up to 34 billion states), and we compare the results with the optimal value functions.


APRICODD: Approximate Policy Construction Using Decision Diagrams

Neural Information Processing Systems

We propose a method of approximate dynamic programming for Markov decision processes (MDPs) using algebraic decision diagrams (ADDs). We produce near-optimal value functions and policies with much lower time and space requirements than exact dynamic programming. Our method reduces the sizes of the intermediate value functions generated during value iteration by replacing the values at the terminals of the ADD with ranges of values. Our method is demonstrated on a class of large MDPs (with up to 34 billion states), and we compare the results with the optimal value functions.