Srinivasan, Balaji Vasan
DRAG: Director-Generator Language Modelling Framework for Non-Parallel Author Stylized Rewriting
Singh, Hrituraj, Verma, Gaurav, Garimella, Aparna, Srinivasan, Balaji Vasan
Author stylized rewriting is the task of rewriting an input text in a particular author's style. Recent works in this area have leveraged Transformer-based language models in a denoising autoencoder setup to generate author stylized text without relying on a parallel corpus of data. However, these approaches are limited by the lack of explicit control of target attributes and being entirely data-driven. In this paper, we propose a Director-Generator framework to rewrite content in the target author's style, specifically focusing on certain target attributes. We show that our proposed framework works well even with a limited-sized target author corpus. Our experiments on corpora consisting of relatively small-sized text authored by three distinct authors show significant improvements upon existing works to rewrite input texts in target author's style. Our quantitative and qualitative analyses further show that our model has better meaning retention and results in more fluent generations.
Reinforced Rewards Framework for Text Style Transfer
Sancheti, Abhilasha, Krishna, Kundan, Srinivasan, Balaji Vasan, Natarajan, Anandhavelu
Style transfer deals with the algorithms to transfer the stylistic properties of a piece of text into that of another while ensuring that the core content is preserved. There has been a lot of interest in the field of text style transfer due to its wide application to tailored text generation. Existing works evaluate the style transfer models based on content preservation and transfer strength. In this work, we propose a reinforcement learning based framework that directly rewards the framework on these target metrics yielding a better transfer of the target style. We show the improved performance of our proposed framework based on automatic and human evaluation on three independent tasks: wherein we transfer the style of text from formal to informal, high excitement to low excitement, modern English to Shakespearean English, and vice-versa in all the three cases. Improved performance of the proposed framework over existing state-of-the-art frameworks indicates the viability of the approach.
Let's Ask Again: Refine Network for Automatic Question Generation
Nema, Preksha, Mohankumar, Akash Kumar, Khapra, Mitesh M., Srinivasan, Balaji Vasan, Ravindran, Balaraman
In this work, we focus on the task of Automatic Question Generation (AQG) where given a passage and an answer the task is to generate the corresponding question. It is desired that the generated question should be (i) grammatically correct (ii) answerable from the passage and (iii) specific to the given answer. An analysis of existing AQG models shows that they produce questions which do not adhere to one or more of {the above-mentioned qualities}. In particular, the generated questions look like an incomplete draft of the desired question with a clear scope for refinement. {To alleviate this shortcoming}, we propose a method which tries to mimic the human process of generating questions by first creating an initial draft and then refining it. More specifically, we propose Refine Network (RefNet) which contains two decoders. The second decoder uses a dual attention network which pays attention to both (i) the original passage and (ii) the question (initial draft) generated by the first decoder. In effect, it refines the question generated by the first decoder, thereby making it more correct and complete. We evaluate RefNet on three datasets, \textit{viz.}, SQuAD, HOTPOT-QA, and DROP, and show that it outperforms existing state-of-the-art methods by 7-16\% on all of these datasets. Lastly, we show that we can improve the quality of the second decoder on specific metrics, such as, fluency and answerability by explicitly rewarding revisions that improve on the corresponding metric during training. The code has been made publicly available \footnote{https://github.com/PrekshaNema25/RefNet-QG}
Improving generation quality of pointer networks via guided attention
Chawla, Kushal, Krishna, Kundan, Srinivasan, Balaji Vasan
Pointer generator networks have been used successfully for abstractive summarization. Along with the capability to generate novel words, it also allows the model to copy from the input text to handle out-of-vocabulary words. In this paper, we point out two key shortcomings of the summaries generated with this framework via manual inspection, statistical analysis and human evaluation. The first shortcoming is the extractive nature of the generated summaries, since the network eventually learns to copy from the input article most of the times, affecting the abstractive nature of the generated summaries. The second shortcoming is the factual inaccuracies in the generated text despite grammatical correctness. Our analysis indicates that this arises due to incorrect attention transition between different parts of the article. We propose an initial attempt towards addressing both these shortcomings by externally appending traditional linguistic information parsed from the input text, thereby teaching networks on the structure of the underlying text. Results indicate feasibility and potential of such additional cues for improved generation.