Srinivas, Suraj
On Minimizing the Impact of Dataset Shifts on Actionable Explanations
Meyer, Anna P., Ley, Dan, Srinivas, Suraj, Lakkaraju, Himabindu
The Right to Explanation is an important regulatory principle that allows individuals to request actionable explanations for algorithmic decisions. However, several technical challenges arise when providing such actionable explanations in practice. For instance, models are periodically retrained to handle dataset shifts. This process may invalidate some of the previously prescribed explanations, thus rendering them unactionable. But, it is unclear if and when such invalidations occur, and what factors determine explanation stability i.e., if an explanation remains unchanged amidst model retraining due to dataset shifts. In this paper, we address the aforementioned gaps and provide one of the first theoretical and empirical characterizations of the factors influencing explanation stability. To this end, we conduct rigorous theoretical analysis to demonstrate that model curvature, weight decay parameters while training, and the magnitude of the dataset shift are key factors that determine the extent of explanation (in)stability. Extensive experimentation with real-world datasets not only validates our theoretical results, but also demonstrates that the aforementioned factors dramatically impact the stability of explanations produced by various state-of-the-art methods.
Word-Level Explanations for Analyzing Bias in Text-to-Image Models
Lin, Alexander, Paes, Lucas Monteiro, Tanneru, Sree Harsha, Srinivas, Suraj, Lakkaraju, Himabindu
Text-to-image models take a sentence (i.e., prompt) and generate images associated with this input prompt. These models have created award wining-art, videos, and even synthetic datasets. However, text-to-image (T2I) models can generate images that underrepresent minorities based on race and sex. This paper investigates which word in the input prompt is responsible for bias in generated images. We introduce a method for computing scores for each word in the prompt; these scores represent its influence on biases in the model's output. Our method follows the principle of \emph{explaining by removing}, leveraging masked language models to calculate the influence scores. We perform experiments on Stable Diffusion to demonstrate that our method identifies the replication of societal stereotypes in generated images.
Which Models have Perceptually-Aligned Gradients? An Explanation via Off-Manifold Robustness
Srinivas, Suraj, Bordt, Sebastian, Lakkaraju, Hima
One of the remarkable properties of robust computer vision models is that their input-gradients are often aligned with human perception, referred to in the literature as perceptually-aligned gradients (PAGs). Despite only being trained for classification, PAGs cause robust models to have rudimentary generative capabilities, including image generation, denoising, and in-painting. However, the underlying mechanisms behind these phenomena remain unknown. In this work, we provide a first explanation of PAGs via \emph{off-manifold robustness}, which states that models must be more robust off- the data manifold than they are on-manifold. We first demonstrate theoretically that off-manifold robustness leads input gradients to lie approximately on the data manifold, explaining their perceptual alignment. We then show that Bayes optimal models satisfy off-manifold robustness, and confirm the same empirically for robust models trained via gradient norm regularization, noise augmentation, and randomized smoothing. Quantifying the perceptual alignment of model gradients via their similarity with the gradients of generative models, we show that off-manifold robustness correlates well with perceptual alignment. Finally, based on the levels of on- and off-manifold robustness, we identify three different regimes of robustness that affect both perceptual alignment and model accuracy: weak robustness, bayes-aligned robustness, and excessive robustness.
Data-Efficient Structured Pruning via Submodular Optimization
Halabi, Marwa El, Srinivas, Suraj, Lacoste-Julien, Simon
Structured pruning is an effective approach for compressing large pre-trained neural networks without significantly affecting their performance. However, most current structured pruning methods do not provide any performance guarantees, and often require fine-tuning, which makes them inapplicable in the limited-data regime. We propose a principled data-efficient structured pruning method based on submodular optimization. In particular, for a given layer, we select neurons/channels to prune and corresponding new weights for the next layer, that minimize the change in the next layer's input induced by pruning. We show that this selection problem is a weakly submodular maximization problem, thus it can be provably approximated using an efficient greedy algorithm. Our method is guaranteed to have an exponentially decreasing error between the original model and the pruned model outputs w.r.t the pruned size, under reasonable assumptions. It is also one of the few methods in the literature that uses only a limited-number of training data and no labels. Our experimental results demonstrate that our method outperforms state-of-the-art methods in the limited-data regime.
Efficiently Training Low-Curvature Neural Networks
Srinivas, Suraj, Matoba, Kyle, Lakkaraju, Himabindu, Fleuret, Francois
Standard deep neural networks often have excess non-linearity, making them susceptible to issues such as low adversarial robustness and gradient instability. Common methods to address these downstream issues, such as adversarial training, are expensive and often sacrifice predictive accuracy. In this work, we address the core issue of excess non-linearity via curvature, and demonstrate low-curvature neural networks (LCNNs) that obtain drastically lower curvature than standard models while exhibiting similar predictive performance. This leads to improved robustness and stable gradients, at a fraction of the cost of standard adversarial training. To achieve this, we decompose overall model curvature in terms of curvatures and slopes of its constituent layers. To enable efficient curvature minimization of constituent layers, we introduce two novel architectural components: first, a non-linearity called centered-softplus that is a stable variant of the softplus non-linearity, and second, a Lipschitz-constrained batch normalization layer. Our experiments show that LCNNs have lower curvature, more stable gradients and increased off-the-shelf adversarial robustness when compared to standard neural networks, all without affecting predictive performance. Our approach is easy to use and can be readily incorporated into existing neural network architectures. Code to implement our method and replicate our experiments is available at https://github.com/kylematoba/lcnn.
Which Explanation Should I Choose? A Function Approximation Perspective to Characterizing Post Hoc Explanations
Han, Tessa, Srinivas, Suraj, Lakkaraju, Himabindu
A critical problem in the field of post hoc explainability is the lack of a common foundational goal among methods. For example, some methods are motivated by function approximation, some by game theoretic notions, and some by obtaining clean visualizations. This fragmentation of goals causes not only an inconsistent conceptual understanding of explanations but also the practical challenge of not knowing which method to use when. In this work, we begin to address these challenges by unifying eight popular post hoc explanation methods (LIME, C-LIME, KernelSHAP, Occlusion, Vanilla Gradients, Gradients x Input, SmoothGrad, and Integrated Gradients). We show that these methods all perform local function approximation of the black-box model, differing only in the neighbourhood and loss function used to perform the approximation. This unification enables us to (1) state a no free lunch theorem for explanation methods, demonstrating that no method can perform optimally across all neighbourhoods, and (2) provide a guiding principle to choose among methods based on faithfulness to the black-box model. We empirically validate these theoretical results using various real-world datasets, model classes, and prediction tasks. By bringing diverse explanation methods into a common framework, this work (1) advances the conceptual understanding of these methods, revealing their shared local function approximation objective, properties, and relation to one another, and (2) guides the use of these methods in practice, providing a principled approach to choose among methods and paving the way for the creation of new ones.
Gradient Alignment in Deep Neural Networks
Srinivas, Suraj, Fleuret, Francois
One cornerstone of interpretable deep learning is the high degree of visual alignment that input-gradients, i.e.,the gradients of the output w.r.t. inputs, exhibit with the input data. This alignment is assumed to arise as a result of the model's generalization, justifying its use for interpretability. However, recent work has shown that it is possible to 'fool' models into having arbitrary gradients while achieving good generalization, thus falsifying the assumption above. This leaves an open question: if not generalization, what causes input-gradients to align with input data? In this work, we first show that it is simple to 'fool' input-gradients using the shift-invariance property of softmax, and that gradient structure is unrelated to model generalization. Second, we re-interpret the logits of standard classifiers as unnormalized log-densities of the data distribution, and find that we can improve this gradient alignment via a generative modelling objective called score-matching.To show this, we derive a novel approximation to the score-matching objective that eliminates the need for expensive Hessian computations, which may be of independent interest.Our experiments help us identify one factor that causes input-gradient alignment in models, that being the approximate generative modelling behaviour of the normalized logit distributions.
Full-Jacobian Representation of Neural Networks
Srinivas, Suraj, Fleuret, Francois
Non-linear functions such as neural networks can be locally approximated by affine planes. Recent works make use of input-Jacobians, which describe the normal to these planes. In this paper, we introduce full-Jacobians, which includes this normal along with an additional intercept term called the bias-Jacobians, that together completely describe local planes. For ReLU neural networks, bias-Jacobians correspond to sums of gradients of outputs w.r.t. intermediate layer activations. We first use these full-Jacobians for distillation by aligning gradients of their intermediate representations. Next, we regularize bias-Jacobians alone to improve generalization. Finally, we show that full-Jacobian maps can be viewed as saliency maps. Experimental results show improved distillation on small data-sets, improved generalization for neural network training, and sharper saliency maps.