Squires, Chandler
Efficient Permutation Discovery in Causal DAGs
Squires, Chandler, Amaniampong, Joshua, Uhler, Caroline
The problem of learning a directed acyclic graph (DAG) up to Markov equivalence is equivalent to the problem of finding a permutation of the variables that induces the sparsest graph. Without additional assumptions, this task is known to be NP-hard. Building on the minimum degree algorithm for sparse Cholesky decomposition, but utilizing DAG-specific problem structure, we introduce an efficient algorithm for finding such sparse permutations. We show that on jointly Gaussian distributions, our method with depth $w$ runs in $O(p^{w+3})$ time. We compare our method with $w = 1$ to algorithms for finding sparse elimination orderings of undirected graphs, and show that taking advantage of DAG-specific problem structure leads to a significant improvement in the discovered permutation. We also compare our algorithm to provably consistent causal structure learning algorithms, such as the PC algorithm, GES, and GSP, and show that our method achieves comparable performance with a shorter runtime. Thus, our method can be used on its own for causal structure discovery. Finally, we show that there exist dense graphs on which our method achieves almost perfect performance, so that unlike most existing causal structure learning algorithms, the situations in which our algorithm achieves both good performance and good runtime are not limited to sparse graphs.
Active Structure Learning of Causal DAGs via Directed Clique Tree
Squires, Chandler, Magliacane, Sara, Greenewald, Kristjan, Katz, Dmitriy, Kocaoglu, Murat, Shanmugam, Karthikeyan
A growing body of work has begun to study intervention design for efficient structure learning of causal directed acyclic graphs (DAGs). A typical setting is a causally sufficient setting, i.e. a system with no latent confounders, selection bias, or feedback, when the essential graph of the observational equivalence class (EC) is given as an input and interventions are assumed to be noiseless. Most existing works focus on worst-case or average-case lower bounds for the number of interventions required to orient a DAG. These worst-case lower bounds only establish that the largest clique in the essential graph could make it difficult to learn the true DAG. In this work, we develop a universal lower bound for single-node interventions that establishes that the largest clique is always a fundamental impediment to structure learning. Specifically, we present a decomposition of a DAG into independently orientable components through directed clique trees and use it to prove that the number of single-node interventions necessary to orient any DAG in an EC is at least the sum of half the size of the largest cliques in each chain component of the essential graph. Moreover, we present a two-phase intervention design algorithm that, under certain conditions on the chordal skeleton, matches the optimal number of interventions up to a multiplicative logarithmic factor in the number of maximal cliques. We show via synthetic experiments that our algorithm can scale to much larger graphs than most of the related work and achieves better worst-case performance than other scalable approaches. A code base to recreate these results can be found at https://github.com/csquires/dct-policy
Size of Interventional Markov Equivalence Classes in Random DAG Models
Katz, Dmitriy, Shanmugam, Karthikeyan, Squires, Chandler, Uhler, Caroline
Directed acyclic graph (DAG) models are popular for capturing causal relationships. From observational and interventional data, a DAG model can only be determined up to its \emph{interventional Markov equivalence class} (I-MEC). We investigate the size of MECs for random DAG models generated by uniformly sampling and ordering an Erd\H{o}s-R\'{e}nyi graph. For constant density, we show that the expected $\log$ observational MEC size asymptotically (in the number of vertices) approaches a constant. We characterize I-MEC size in a similar fashion in the above settings with high precision. We show that the asymptotic expected number of interventions required to fully identify a DAG is a constant. These results are obtained by exploiting Meek rules and coupling arguments to provide sharp upper and lower bounds on the asymptotic quantities, which are then calculated numerically up to high precision. Our results have important consequences for experimental design of interventions and the development of algorithms for causal inference.
Direct Estimation of Differences in Causal Graphs
Wang, Yuhao, Squires, Chandler, Belyaeva, Anastasiya, Uhler, Caroline
We consider the problem of estimating the differences between two causal directed acyclic graph (DAG) models with a shared topological order given i.i.d. samples from each model. This is of interest for example in genomics, where changes in the structure or edge weights of the underlying causal graphs reflect alterations in the gene regulatory networks. We here provide the first provably consistent method for directly estimating the differences in a pair of causal DAGs without separately learning two possibly large and dense DAG models and computing their difference. Our two-step algorithm first uses invariance tests between regression coefficients of the two data sets to estimate the skeleton of the difference graph and then orients some of the edges using invariance tests between regression residual variances. We demonstrate the properties of our method through a simulation study and apply it to the analysis of gene expression data from ovarian cancer and during T-cell activation.
Direct Estimation of Differences in Causal Graphs
Wang, Yuhao, Squires, Chandler, Belyaeva, Anastasiya, Uhler, Caroline
We consider the problem of estimating the differences between two causal directed acyclic graph (DAG) models with a shared topological order given i.i.d. samples from each model. This is of interest for example in genomics, where changes in the structure or edge weights of the underlying causal graphs reflect alterations in the gene regulatory networks. We here provide the first provably consistent method for directly estimating the differences in a pair of causal DAGs without separately learning two possibly large and dense DAG models and computing their difference. Our two-step algorithm first uses invariance tests between regression coefficients of the two data sets to estimate the skeleton of the difference graph and then orients some of the edges using invariance tests between regression residual variances. We demonstrate the properties of our method through a simulation study and apply it to the analysis of gene expression data from ovarian cancer and during T-cell activation.