Spasojevic, Igor
A Data-Driven Approach to Synthesizing Dynamics-Aware Trajectories for Underactuated Robotic Systems
Srikanthan, Anusha, Yang, Fengjun, Spasojevic, Igor, Thakur, Dinesh, Kumar, Vijay, Matni, Nikolai
We consider joint trajectory generation and tracking control for under-actuated robotic systems. A common solution is to use a layered control architecture, where the top layer uses a simplified model of system dynamics for trajectory generation, and the low layer ensures approximate tracking of this trajectory via feedback control. While such layered control architectures are standard and work well in practice, selecting the simplified model used for trajectory generation typically relies on engineering intuition and experience. In this paper, we propose an alternative data-driven approach to dynamics-aware trajectory generation. We show that a suitable augmented Lagrangian reformulation of a global nonlinear optimal control problem results in a layered decomposition of the overall problem into trajectory planning and feedback control layers. Crucially, the resulting trajectory optimization is dynamics-aware, in that, it is modified with a tracking penalty regularizer encoding the dynamic feasibility of the generated trajectory. We show that this tracking penalty regularizer can be learned from system rollouts for independently-designed low layer feedback control policies, and instantiate our framework in the context of a unicycle and a quadrotor control problem in simulation. Further, we show that our approach handles the sim-to-real gap through experiments on the quadrotor hardware platform without any additional training. For both the synthetic unicycle example and the quadrotor system, our framework shows significant improvements in both computation time and dynamic feasibility in simulation and hardware experiments.
Active Collaborative Localization in Heterogeneous Robot Teams
Spasojevic, Igor, Liu, Xu, Ribeiro, Alejandro, Pappas, George J., Kumar, Vijay
Accurate and robust state estimation is critical for autonomous navigation of robot teams. This task is especially challenging for large groups of size, weight, and power (SWAP) constrained aerial robots operating in perceptually-degraded GPS-denied environments. We can, however, actively increase the amount of perceptual information available to such robots by augmenting them with a small number of more expensive, but less resource-constrained, agents. Specifically, the latter can serve as sources of perceptual information themselves. In this paper, we study the problem of optimally positioning (and potentially navigating) a small number of more capable agents to enhance the perceptual environment for their lightweight,inexpensive, teammates that only need to rely on cameras and IMUs. We propose a numerically robust, computationally efficient approach to solve this problem via nonlinear optimization. Our method outperforms the standard approach based on the greedy algorithm, while matching the accuracy of a heuristic evolutionary scheme for global optimization at a fraction of its running time. Ultimately, we validate our solution in both photorealistic simulations and real-world experiments. In these experiments, we use lidar-based autonomous ground vehicles as the more capable agents, and vision-based aerial robots as their SWAP-constrained teammates. Our method is able to reduce drift in visual-inertial odometry by as much as 90%, and it outperforms random positioning of lidar-equipped agents by a significant margin. Furthermore, our method can be generalized to different types of robot teams with heterogeneous perception capabilities. It has a wide range of applications, such as surveying and mapping challenging dynamic environments, and enabling resilience to large-scale perturbations that can be caused by earthquakes or storms.