Plotting

 Soni, Rahul


Improving Lesion Segmentation in FDG-18 Whole-Body PET/CT scans using Multilabel approach: AutoPET II challenge

arXiv.org Artificial Intelligence

Automatic segmentation of lesions in FDG-18 Whole Body (WB) PET/CT scans using deep learning models is instrumental for determining treatment response, optimizing dosimetry, and advancing theranostic applications in oncology. However, the presence of organs with elevated radiotracer uptake, such as the liver, spleen, brain, and bladder, often leads to challenges, as these regions are often misidentified as lesions by deep learning models. To address this issue, we propose a novel approach of segmenting both organs and lesions, aiming to enhance the performance of automatic lesion segmentation methods. In this study, we assessed the effectiveness of our proposed method using the AutoPET II challenge dataset, which comprises 1014 subjects. We evaluated the impact of inclusion of additional labels and data in the segmentation performance of the model. In addition to the expert-annotated lesion labels, we introduced eight additional labels for organs, including the liver, kidneys, urinary bladder, spleen, lung, brain, heart, and stomach. These labels were integrated into the dataset, and a 3D UNET model was trained within the nnUNet framework. Our results demonstrate that our method achieved the top ranking in the held-out test dataset, underscoring the potential of this approach to significantly improve lesion segmentation accuracy in FDG-18 Whole-Body PET/CT scans, ultimately benefiting cancer patients and advancing clinical practice.


Adversarial TCAV -- Robust and Effective Interpretation of Intermediate Layers in Neural Networks

arXiv.org Machine Learning

Interpreting neural network decisions and the information learned in intermediate layers is still a challenge due to the opaque internal state and shared non-linear interactions. Although (Kim et al, 2017) proposed to interpret intermediate layers by quantifying its ability to distinguish a user-defined concept (from random examples), the questions of robustness (variation against the choice of random examples) and effectiveness (retrieval rate of concept images) remain. We investigate these two properties and propose improvements to make concept activations reliable for practical use. Effectiveness: If the intermediate layer has effectively learned a user-defined concept, it should be able to recall --- at the testing step --- most of the images containing the proposed concept. For instance, we observed that the recall rate of Tiger shark and Great white shark from the ImageNet dataset with "Fins" as a user-defined concept was only 18.35% for VGG16. To increase the effectiveness of concept learning, we propose A-CAV --- the Adversarial Concept Activation Vector --- this results in larger margins between user concepts and (negative) random examples. This approach improves the aforesaid recall to 76.83% for VGG16. For robustness, we define it as the ability of an intermediate layer to be consistent in its recall rate (the effectiveness) for different random seeds. We observed that TCAV has a large variance in recalling a concept across different random seeds. For example, the recall of cat images (from a layer learning the concept of tail) varies from 18% to 86% with 20.85% standard deviation on VGG16. We propose a simple and scalable modification that employs a Gram-Schmidt process to sample random noise from concepts and learn an average "concept classifier". This approach improves the aforesaid standard deviation from 20.85% to 6.4%.