Goto

Collaborating Authors

 Smyth, Padhraic


Fault Diagnosis of Antenna Pointing Systems using Hybrid Neural Network and Signal Processing Models

Neural Information Processing Systems

Padhraic Smyth, J eft" Mellstrom Jet Propulsion Laboratory 238-420 California Institute of Technology Pasadena, CA 91109 Abstract We describe in this paper a novel application of neural networks to system health monitoring of a large antenna for deep space communications. The paper outlines our approach to building a monitoring system using hybrid signal processing and neural network techniques, including autoregressive modelling, pattern recognition, and Hidden Markov models. We discuss several problems which are somewhat generic in applications of this kind - in particular we address the problem of detecting classes which were not present in the training data. Experimental results indicate that the proposed system is sufficiently reliable for practical implementation. 1 Background: The Deep Space Network The Deep Space Network (DSN) (designed and operated by the Jet Propulsion Laboratory (JPL)for the National Aeronautics and Space Administration (NASA)) is unique in terms of ...


Fault Diagnosis of Antenna Pointing Systems using Hybrid Neural Network and Signal Processing Models

Neural Information Processing Systems

We describe in this paper a novel application of neural networks to system health monitoring of a large antenna for deep space communications. The paper outlines our approach to building a monitoring system using hybrid signal processing and neural network techniques, including autoregressive modelling, pattern recognition, and Hidden Markov models. We discuss several problems which are somewhat generic in applications of this kind - in particular we address the problem of detecting classes which were not present in the training data. Experimental results indicate that the proposed system is sufficiently reliable for practical implementation. 1 Background: The Deep Space Network The Deep Space Network (DSN) (designed and operated by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration (NASA)) is unique in terms of providing end-to-end telecommunication capabilities between earth and various interplanetary spacecraft throughout the solar system. The ground component of the DSN consists of three ground station complexes located in California, Spain and Australia, giving full 24-hour coverage for deep space communications.


On Stochastic Complexity and Admissible Models for Neural Network Classifiers

Neural Information Processing Systems

For a detailed rationale the reader is referred to the work of Rissanen (1984) or Wallace and Freeman (1987) and the references therein. Note that the Minimum Description Length (MDL) technique (as Rissanen's approach has become known) is implicitly related to Maximum A Posteriori (MAP) Bayesian estimation techniques if cast in the appropriate framework.


On Stochastic Complexity and Admissible Models for Neural Network Classifiers

Neural Information Processing Systems

Padhraic Smyth Communications Systems Research Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 Abstract Given some training data how should we choose a particular network classifier froma family of networks of different complexities? In this paper we discuss how the application of stochastic complexity theory to classifier design problems can provide some insights into this problem. In particular we introduce the notion of admissible models whereby the complexity of models under consideration is affected by (among other factors) the class entropy, the amount of training data, and our prior belief. In particular we discuss the implications of these results with respect to neural architectures anddemonstrate the approach on real data from a medical diagnosis task. 1 Introduction and Motivation In this paper we examine in a general sense the application of Minimum Description Length (MDL) techniques to the problem of selecting a good classifier from a large set of candidate models or hypotheses. Pattern recognition algorithms differ from more conventional statistical modeling techniques in the sense that they typically choose from a very large number of candidate models to describe the available data.


On Stochastic Complexity and Admissible Models for Neural Network Classifiers

Neural Information Processing Systems

For a detailed rationale the reader is referred to the work of Rissanen (1984) or Wallace and Freeman (1987) and the references therein. Note that the Minimum Description Length (MDL) technique (as Rissanen's approach has become known) is implicitly related to Maximum A Posteriori (MAP) Bayesian estimation techniques if cast in the appropriate framework.


An Information Theoretic Approach to Rule-Based Connectionist Expert Systems

Neural Information Processing Systems

We discuss in this paper architectures for executing probabilistic rule-bases in a parallel manner, using as a theoretical basis recently introduced information-theoretic models. We will begin by describing our (non-neural) learning algorithm and theory of quantitative rule modelling, followed by a discussion on the exact nature of two particular models. Finally we work through an example of our approach, going from database to rules to inference network, and compare the network's performance with the theoretical limits for specific problems.


An Information Theoretic Approach to Rule-Based Connectionist Expert Systems

Neural Information Processing Systems

We discuss in this paper architectures for executing probabilistic rule-bases in a parallel manner,using as a theoretical basis recently introduced information-theoretic models. We will begin by describing our (non-neural) learning algorithm and theory of quantitative rule modelling, followed by a discussion on the exact nature of two particular models. Finally we work through an example of our approach, going from database to rules to inference network, and compare the network's performance with the theoretical limits for specific problems.


An Information Theoretic Approach to Rule-Based Connectionist Expert Systems

Neural Information Processing Systems

We discuss in this paper architectures for executing probabilistic rule-bases in a parallel manner, using as a theoretical basis recently introduced information-theoretic models. We will begin by describing our (non-neural) learning algorithm and theory of quantitative rule modelling, followed by a discussion on the exact nature of two particular models. Finally we work through an example of our approach, going from database to rules to inference network, and compare the network's performance with the theoretical limits for specific problems.