Goto

Collaborating Authors

 Smyth, Padhraic


User-Dependent Neural Sequence Models for Continuous-Time Event Data

arXiv.org Machine Learning

Continuous-time event data are common in applications such as individual behavior data, financial transactions, and medical health records. Modeling such data can be very challenging, in particular for applications with many different types of events, since it requires a model to predict the event types as well as the time of occurrence. Recurrent neural networks that parameterize time-varying intensity functions are the current state-of-the-art for predictive modeling with such data. These models typically assume that all event sequences come from the same data distribution. However, in many applications event sequences are generated by different sources, or users, and their characteristics can be very different. In this paper, we extend the broad class of neural marked point process models to mixtures of latent embeddings, where each mixture component models the characteristic traits of a given user. Our approach relies on augmenting these models with a latent variable that encodes user characteristics, represented by a mixture model over user behavior that is trained via amortized variational inference. We evaluate our methods on four large real-world datasets and demonstrate systematic improvements from our approach over existing work for a variety of predictive metrics such as log-likelihood, next event ranking, and source-of-sequence identification.


Can I Trust My Fairness Metric? Assessing Fairness with Unlabeled Data and Bayesian Inference

arXiv.org Artificial Intelligence

We investigate the problem of reliably assessing group fairness when labeled examples are few but unlabeled examples are plentiful. We propose a general Bayesian framework that can augment labeled data with unlabeled data to produce more accurate and lower-variance estimates compared to methods based on labeled data alone. Our approach estimates calibrated scores for unlabeled examples in each group using a hierarchical latent variable model conditioned on labeled examples. This in turn allows for inference of posterior distributions with associated notions of uncertainty for a variety of group fairness metrics. We demonstrate that our approach leads to significant and consistent reductions in estimation error across multiple well-known fairness datasets, sensitive attributes, and predictive models. The results show the benefits of using both unlabeled data and Bayesian inference in terms of assessing whether a prediction model is fair or not.


Active Bayesian Assessment for Black-Box Classifiers

arXiv.org Machine Learning

Recent advances in machine learning have led to increased deployment of black-box classifiers across a wide variety of applications. In many such situations there is a crucial need to assess the performance of these pre-trained models, for instance to ensure sufficient predictive accuracy, or that class probabilities are well-calibrated. Furthermore, since labeled data may be scarce or costly to collect, it is desirable for such assessment be performed in an efficient manner. In this paper, we introduce a Bayesian approach for model assessment that satisfies these desiderata. We develop inference strategies to quantify uncertainty for common assessment metrics (accuracy, misclassification cost, expected calibration error), and propose a framework for active assessment using this uncertainty to guide efficient selection of instances for labeling. We illustrate the benefits of our approach in experiments assessing the performance of modern neural classifiers (e.g., ResNet and BERT) on several standard image and text classification datasets.


Continuous-Time Regression Models for Longitudinal Networks

Neural Information Processing Systems

The development of statistical models for continuous-time longitudinal network data is of increasing interest in machine learning and social science. Leveraging ideas from survival and event history analysis, we introduce a continuous-time regression modeling framework for network event data that can incorporate both time-dependent network statistics and time-varying regression coefficients. We also develop an efficient inference scheme that allows our approach to scale to large networks. On synthetic and real-world data, empirical results demonstrate that the proposed inference approach can accurately estimate the coefficients of the regression model, which is useful for interpreting the evolution of the network; furthermore, the learned model has systematically better predictive performance compared to standard baseline methods. Papers published at the Neural Information Processing Systems Conference.


Unifying the Dropout Family Through Structured Shrinkage Priors

arXiv.org Machine Learning

Dropout regularization of deep neural networks has been a mysterious yet effective tool to prevent overfitting. Explanations for its success range from the prevention of "co-adapted" weights to it being a form of cheap Bayesian inference. We propose a novel framework for understanding multiplicative noise in neural networks, considering continuous distributions as well as Bernoulli (i.e. dropout). We show that multiplicative noise induces structured shrinkage priors on a network's weights. We derive the equivalence through reparametrization properties of scale mixtures and not via any approximation. Given the equivalence, we then show that dropout's usual Monte Carlo training objective approximates marginal MAP estimation. We analyze this MAP objective under strong shrinkage, showing the expanded parametrization (i.e. likelihood noise) is more stable than a hierarchical representation. Lastly, we derive analogous priors for ResNets, RNNs, and CNNs and reveal their equivalent implementation as noise.


Mondrian Processes for Flow Cytometry Analysis

arXiv.org Machine Learning

Analysis of flow cytometry data is an essential tool for clinical diagnosis of hematological and immunological conditions. Current clinical workflows rely on a manual process called gating to classify cells into their canonical types. This dependence on human annotation limits the rate, reproducibility, and complexity of flow cytometry analysis. In this paper, we propose using Mondrian processes to perform automated gating by incorporating prior information of the kind used by gating technicians. The method segments cells into types via Bayesian nonparametric trees. Examining the posterior over trees allows for interpretable visualizations and uncertainty quantification - two vital qualities for implementation in clinical practice.


Learning Approximately Objective Priors

arXiv.org Machine Learning

Informative Bayesian priors are often difficult to elicit, and when this is the case, modelers usually turn to noninformative or objective priors. However, objective priors such as the Jeffreys and reference priors are not tractable to derive for many models of interest. We address this issue by proposing techniques for learning reference prior approximations: we select a parametric family and optimize a black-box lower bound on the reference prior objective to find the member of the family that serves as a good approximation. We experimentally demonstrate the method's effectiveness by recovering Jeffreys priors and learning the Variational Autoencoder's reference prior.


Stick-Breaking Variational Autoencoders

arXiv.org Machine Learning

We extend Stochastic Gradient Variational Bayes to perform posterior inference for the weights of Stick-Breaking processes. This development allows us to define a Stick-Breaking Variational Autoencoder (SB-VAE), a Bayesian nonparametric version of the variational autoencoder that has a latent representation with stochastic dimensionality. We experimentally demonstrate that the SB-VAE, and a semi-supervised variant, learn highly discriminative latent representations that often outperform the Gaussian VAE's.


Bayesian Non-Homogeneous Markov Models via Polya-Gamma Data Augmentation with Applications to Rainfall Modeling

arXiv.org Machine Learning

Discrete-time hidden Markov models are a broadly useful class of latent-variable models with applications in areas such as speech recognition, bioinformatics, and climate data analysis. It is common in practice to introduce temporal non-homogeneity into such models by making the transition probabilities dependent on time-varying exogenous input variables via a multinomial logistic parametrization. We extend such models to introduce additional non-homogeneity into the emission distribution using a generalized linear model (GLM), with data augmentation for sampling-based inference. However, the presence of the logistic function in the state transition model significantly complicates parameter inference for the overall model, particularly in a Bayesian context. To address this we extend the recently-proposed Polya-Gamma data augmentation approach to handle non-homogeneous hidden Markov models (NHMMs), allowing the development of an efficient Markov chain Monte Carlo (MCMC) sampling scheme. We apply our model and inference scheme to 30 years of daily rainfall in India, leading to a number of insights into rainfall-related phenomena in the region. Our proposed approach allows for fully Bayesian analysis of relatively complex NHMMs on a scale that was not possible with previous methods. Software implementing the methods described in the paper is available via the R package NHMM.


Analyzing NIH Funding Patterns over Time with Statistical Text Analysis

AAAI Conferences

In the past few years various government funding organizations such as the U.S. National Institutes of Health and the U.S.\ National Science Foundation have provided access to large publicly-available online databases documenting the grants that they have funded over the past few decades. These databases provide an excellent opportunity for the application of statistical text analysis techniques to infer useful quantitative information about how funding patterns have changed over time. In this paper we analyze data from the National Cancer Institute (part of National Institutes of Health) and show how text classification techniques provide a useful starting point for analyzing how funding for cancer research has evolved over the past 20 years in the United States.