Plotting

 Smith, Stephen F.


V2V-LLM: Vehicle-to-Vehicle Cooperative Autonomous Driving with Multi-Modal Large Language Models

arXiv.org Artificial Intelligence

Current autonomous driving vehicles rely mainly on their individual sensors to understand surrounding scenes and plan for future trajectories, which can be unreliable when the sensors are malfunctioning or occluded. To address this problem, cooperative perception methods via vehicle-to-vehicle (V2V) communication have been proposed, but they have tended to focus on detection and tracking. How those approaches contribute to overall cooperative planning performance is still under-explored. Inspired by recent progress using Large Language Models (LLMs) to build autonomous driving systems, we propose a novel problem setting that integrates an LLM into cooperative autonomous driving, with the proposed Vehicle-to-Vehicle Question-Answering (V2V-QA) dataset and benchmark. We also propose our baseline method Vehicle-to-Vehicle Large Language Model (V2V-LLM), which uses an LLM to fuse perception information from multiple connected autonomous vehicles (CAVs) and answer driving-related questions: grounding, notable object identification, and planning. Experimental results show that our proposed V2V-LLM can be a promising unified model architecture for performing various tasks in cooperative autonomous driving, and outperforms other baseline methods that use different fusion approaches. Our work also creates a new research direction that can improve the safety of future autonomous driving systems. Our project website: https://eddyhkchiu.github.io/v2vllm.github.io/ .


Probabilistic 3D Multi-Object Cooperative Tracking for Autonomous Driving via Differentiable Multi-Sensor Kalman Filter

arXiv.org Artificial Intelligence

Current state-of-the-art autonomous driving vehicles mainly rely on each individual sensor system to perform perception tasks. Such a framework's reliability could be limited by occlusion or sensor failure. To address this issue, more recent research proposes using vehicle-to-vehicle (V2V) communication to share perception information with others. However, most relevant works focus only on cooperative detection and leave cooperative tracking an underexplored research field. A few recent datasets, such as V2V4Real, provide 3D multi-object cooperative tracking benchmarks. However, their proposed methods mainly use cooperative detection results as input to a standard single-sensor Kalman Filter-based tracking algorithm. In their approach, the measurement uncertainty of different sensors from different connected autonomous vehicles (CAVs) may not be properly estimated to utilize the theoretical optimality property of Kalman Filter-based tracking algorithms. In this paper, we propose a novel 3D multi-object cooperative tracking algorithm for autonomous driving via a differentiable multi-sensor Kalman Filter. Our algorithm learns to estimate measurement uncertainty for each detection that can better utilize the theoretical property of Kalman Filter-based tracking methods. The experiment results show that our algorithm improves the tracking accuracy by 17% with only 0.037x communication costs compared with the state-of-the-art method in V2V4Real.


Collision Avoidance Detour for Multi-Agent Trajectory Forecasting

arXiv.org Artificial Intelligence

We present our approach, Collision Avoidance Detour (CAD), which won the 3rd place award in the 2023 Waymo Open Dataset Challenge - Sim Agents, held at the 2023 CVPR Workshop on Autonomous Driving. To satisfy the motion prediction factorization requirement, we partition all the valid objects into three mutually exclusive sets: Autonomous Driving Vehicle (ADV), World-tracks-to-predict, and World-others. We use different motion models to forecast their future trajectories independently. Furthermore, we also apply collision avoidance detour resampling, additive Gaussian noise, and velocity-based heading estimation to improve the realism of our simulation result.


Selective Communication for Cooperative Perception in End-to-End Autonomous Driving

arXiv.org Artificial Intelligence

The reliability of current autonomous driving systems is often jeopardized in situations when the vehicle's field-of-view is limited by nearby occluding objects. To mitigate this problem, vehicle-to-vehicle communication to share sensor information among multiple autonomous driving vehicles has been proposed. However, to enable timely processing and use of shared sensor data, it is necessary to constrain communication bandwidth, and prior work has done so by restricting the number of other cooperative vehicles and randomly selecting the subset of vehicles to exchange information with from all those that are within communication range. Although simple and cost effective from a communication perspective, this selection approach suffers from its susceptibility to missing those vehicles that possess the perception information most critical to navigation planning. Inspired by recent multi-agent path finding research, we propose a novel selective communication algorithm for cooperative perception to address this shortcoming. Implemented with a lightweight perception network and a previously developed control network, our algorithm is shown to produce higher success rates than a random selection approach on previously studied safety-critical driving scenario simulations, with minimal additional communication overhead.


Using Bi-Directional Information Exchange to Improve Decentralized Schedule-Driven Traffic Control

arXiv.org Artificial Intelligence

Recent work in decentralized, schedule-driven traffic control has demonstrated the ability to improve the efficiency of traffic flow in complex urban road networks. In this approach, a scheduling agent is associated with each intersection. Each agent senses the traffic approaching its intersection and in real-time constructs a schedule that minimizes the cumulative wait time of vehicles approaching the intersection over the current look-ahead horizon. In order to achieve network level coordination in a scalable manner, scheduling agents communicate only with their direct neighbors. Each time an agent generates a new intersection schedule it communicates its expected outflows to its downstream neighbors as a prediction of future demand and these outflows are appended to the downstream agent's locally perceived demand. In this paper, we extend this basic coordination algorithm to additionally incorporate the complementary flow of information reflective of an intersection's current congestion level to its upstream neighbors. We present an asynchronous decentralized algorithm for updating intersection schedules and congestion level estimates based on these bi-directional information flows. By relating this algorithm to the self-optimized decision making of the basic operation, we are able to approach network-wide optimality and reduce inefficiency due to strictly self-interested intersection control decisions.


Coping with Large Traffic Volumes in Schedule-Driven Traffic Signal Control

arXiv.org Artificial Intelligence

Recent work in decentralized, schedule-driven traffic control has demonstrated the ability to significantly improve traffic flow efficiency in complex urban road networks. However, in situations where vehicle volumes increase to the point that the physical capacity of a road network reaches or exceeds saturation, it has been observed that the effectiveness of a schedule-driven approach begins to degrade, leading to progressively higher network congestion. In essence, the traffic control problem becomes less of a scheduling problem and more of a queue management problem in this circumstance. In this paper we propose a composite approach to real-time traffic control that uses sensed information on queue lengths to influence scheduling decisions and gracefully shift the signal control strategy to queue management in high volume/high congestion settings. Specifically, queue-length information is used to establish weights for the sensed vehicle clusters that must be scheduled through a given intersection at any point, and hence bias the wait time minimization calculation. To compute these weights, we develop a model in which successive movement phases are viewed as different states of an Ising model, and parameters quantify strength of interactions. To ensure scalability, queue information is only exchanged between direct neighbors and the asynchronous nature of local intersection scheduling is preserved. We demonstrate the potential of the approach through microscopic traffic simulation of a real-world road network, showing a 60% reduction in average wait times over the baseline schedule-driven approach in heavy traffic scenarios. We also report initial field test results, which show the ability to reduce queues during heavy traffic periods.


Expressive Real-Time Intersection Scheduling

AAAI Conferences

We present Expressive Real-time Intersection Scheduling (ERIS), a schedule-driven control strategy for adaptive intersection control to reduce traffic congestion. ERIS maintains separate estimates for each lane approaching a traffic intersection allowing it to more accurately estimate the effects of scheduling decisions than previous schedule-driven approaches. We present a detailed description of the search space and A* search heuristic employed by ERIS to make scheduling decisions in real-time (every second). As a result of its increased expressiveness, ERIS outperforms a less expressive schedule-driven approach and a fully-actuated control method in a variety of simulated traffic environments.


Tackling Large-Scale Home Health Care Delivery Problem with Uncertainty

AAAI Conferences

In this work, we investigate a multi-period Home Health Care Scheduling Problem (HHCSP) under stochastic service and travel times. We first model the deterministic problem as an integer linear programming model that incorporates real-world requirements, such as time windows, continuity of care, workload fairness, inter-visit temporal dependencies. We then extend the model to cope with uncertainty in durations, by introducing chance constraints into the formulation. We propose efficient solution approaches, which provide quantifiable near-optimal solutions and further handle the uncertainties by employing a sampling-based strategy. We demonstrate the effectiveness of our proposed approaches on instances synthetically generated by real-world dataset for both deterministic and stochastic scenarios.


Scalable Approaches to Home Health Care Scheduling Problems with Uncertainty

AAAI Conferences

In this work, we consider the weekly home health care scheduling problem with time windows, continuity of care, workload fairness, and inter-visit temporal dependency, and service/travel time uncertainties. We formulate the problem as a chance constrained mathematical model. We further apply Lagrangian relaxation, exploit the separable structure of the problem, and handle the uncertainties by employing a sampling-based strategy. Experiments have been conducted on a real-world dataset to demonstrate the effectiveness and efficiency of our proposed approaches.


Incremental Management of Oversubscribed Vehicle Schedules in Dynamic Dial-A-Ride Problems

AAAI Conferences

In this paper, we consider the problem of feasibly integrating new pick-up and delivery requests into existing vehicle itineraries in a dynamic, dial-a-ride problem (DARP) setting. Generalizing from previous work in oversubscribed task scheduling, we define a controlled iterative repair search procedure for finding an alternative set of vehicle itineraries in which the overall solution has been feasibly extended to include newly received requests. We first evaluate the performance of this technique on a set of DARP feasibility benchmark problems from the literature. We then consider its use on a real-world DARP problem, where it is necessary to accommodate all requests and constraints must be relaxed when a request cannot be feasibly integrated. For this latter analysis, we introduce a constraint relaxation post processing step and consider the performance impact of using our controlled iterative search over the current greedy search approach.