Goto

Collaborating Authors

 Skorokhodov, Ivan


Imaginative Walks: Generative Random Walk Deviation Loss for Improved Unseen Learning Representation

arXiv.org Artificial Intelligence

We propose a novel loss for generative models, dubbed as GRaWD (Generative Random Walk Deviation), to improve learning representations of unexplored visual spaces. Quality learning representation of unseen classes (or styles) is crucial to facilitate novel image generation and better generative understanding of unseen visual classes (a.k.a. Zero-Shot Learning, ZSL). By generating representations of unseen classes from their semantic descriptions, such as attributes or text, Generative ZSL aims at identifying unseen categories discriminatively from seen ones. We define GRaWD by constructing a dynamic graph, including the seen class/style centers and generated samples in the current mini-batch. Our loss starts a random walk probability from each center through visual generations produced from hallucinated unseen classes. As a deviation signal, we encourage the random walk to eventually land after t steps in a feature representation that is hard to classify to any of the seen classes. We show that our loss can improve unseen class representation quality on four text-based ZSL benchmarks on CUB and NABirds datasets and three attribute-based ZSL benchmarks on AWA2, SUN, and aPY datasets. We also study our loss's ability to produce meaningful novel visual art generations on WikiArt dataset. Our experiments and human studies show that our loss can improve StyleGAN1 and StyleGAN2 generation quality, creating novel art that is significantly more preferred. Code will be made available.


Aligning Latent and Image Spaces to Connect the Unconnectable

arXiv.org Artificial Intelligence

In this work, we develop a method to generate infinite high-resolution images with diverse and complex content. It is based on a perfectly equivariant generator with synchronous interpolations in the image and latent spaces. Latent codes, when sampled, are positioned on the coordinate grid, and each pixel is computed from an interpolation of the nearby style codes. We modify the AdaIN mechanism to work in such a setup and train the generator in an adversarial setting to produce images positioned between any two latent vectors. At test time, this allows for generating complex and diverse infinite images and connecting any two unrelated scenes into a single arbitrarily large panorama. Apart from that, we introduce LHQ: a new dataset of \lhqsize high-resolution nature landscapes. We test the approach on LHQ, LSUN Tower and LSUN Bridge and outperform the baselines by at least 4 times in terms of quality and diversity of the produced infinite images. The project page is located at https://universome.github.io/alis.


Adversarial Generation of Continuous Images

arXiv.org Artificial Intelligence

In most existing learning systems, images are typically viewed as 2D pixel arrays. However, in another paradigm gaining popularity, a 2D image is represented as an implicit neural representation (INR) -- an MLP that predicts an RGB pixel value given its (x,y) coordinate. In this paper, we propose two novel architectural techniques for building INR-based image decoders: factorized multiplicative modulation and multi-scale INRs, and use them to build a state-of-the-art continuous image GAN. Previous attempts to adapt INRs for image generation were limited to MNIST-like datasets and do not scale to complex real-world data. Our proposed architectural design improves the performance of continuous image generators by x6-40 times and reaches FID scores of 6.27 on LSUN bedroom 256x256 and 16.32 on FFHQ 1024x1024, greatly reducing the gap between continuous image GANs and pixel-based ones. To the best of our knowledge, these are the highest reported scores for an image generator, that consists entirely of fully-connected layers. Apart from that, we explore several exciting properties of INR-based decoders, like out-of-the-box superresolution, meaningful image-space interpolation, accelerated inference of low-resolution images, an ability to extrapolate outside of image boundaries and strong geometric prior. The source code is available at https://github.com/universome/inr-gan


Normalization Matters in Zero-Shot Learning

arXiv.org Machine Learning

An ability to grasp new concepts from their descriptions is one of the key features of human intelligence, and zero-shot learning (ZSL) aims to incorporate this property into machine learning models. In this paper, we theoretically investigate two very popular tricks used in ZSL: "normalize scale" trick and attributes normalization and show how they help to preserve a signal's variance in a typical model during a forward pass. Next, we demonstrate that these two tricks are not enough to normalize a deep ZSL network. We derive a new initialization scheme, which allows us to demonstrate strong state-of-the-art results on 4 out of 5 commonly used ZSL datasets: SUN, CUB, AwA1, and AwA2 while being on average 2 orders faster than the closest runner-up. Finally, we generalize ZSL to a broader problem -- Continual Zero-Shot Learning (CZSL) and test our ideas in this new setup. The source code to reproduce all the results is available at https://github.com/universome/czsl.


Loss Landscape Sightseeing with Multi-Point Optimization

arXiv.org Machine Learning

We present multi-point optimization: an optimization technique that allows to train several models simultaneously without the need to keep the parameters of each one individually. The proposed method is used for a thorough empirical analysis of the loss landscape of neural networks. By extensive experiments on FashionMNIST and CIFAR10 datasets we demonstrate two things: 1) loss surface is surprisingly diverse and intricate in terms of landscape patterns it contains, and 2) adding batch normalization makes it more smooth. Source code to reproduce all the reported results is available on GitHub: https://github.com/universome/loss-patterns.