Plotting

 Singh, Satinder


Meta-Gradient Reinforcement Learning with an Objective Discovered Online

arXiv.org Artificial Intelligence

Deep reinforcement learning includes a broad family of algorithms that parameterise an internal representation, such as a value function or policy, by a deep neural network. Each algorithm optimises its parameters with respect to an objective, such as Q-learning or policy gradient, that defines its semantics. In this work, we propose an algorithm based on meta-gradient descent that discovers its own objective, flexibly parameterised by a deep neural network, solely from interactive experience with its environment. Over time, this allows the agent to learn how to learn increasingly effectively. Furthermore, because the objective is discovered online, it can adapt to changes over time. We demonstrate that the algorithm discovers how to address several important issues in RL, such as bootstrapping, non-stationarity, and off-policy learning. On the Atari Learning Environment, the meta-gradient algorithm adapts over time to learn with greater efficiency, eventually outperforming the median score of a strong actor-critic baseline.


How Should an Agent Practice?

arXiv.org Artificial Intelligence

We present a method for learning intrinsic reward functions to drive the learning of an agent during periods of practice in which extrinsic task rewards are not available. During practice, the environment may differ from the one available for training and evaluation with extrinsic rewards. We refer to this setup of alternating periods of practice and objective evaluation as practice-match, drawing an analogy to regimes of skill acquisition common for humans in sports and games. The agent must effectively use periods in the practice environment so that performance improves during matches. In the proposed method the intrinsic practice reward is learned through a meta-gradient approach that adapts the practice reward parameters to reduce the extrinsic match reward loss computed from matches. We illustrate the method on a simple grid world, and evaluate it in two games in which the practice environment differs from match: Pong with practice against a wall without an opponent, and PacMan with practice in a maze without ghosts. The results show gains from learning in practice in addition to match periods over learning in matches only. Introduction There are many applications of reinforcement learning (RL) in which the natural formulation of the reward function gives rise to difficult computational challenges, or in which the reward itself is unavailable for extended periods of time or is difficult to specify. These include settings with very sparse or delayed reward, multiple tasks or goals, reward uncertainty, and learning in the absence of reward or in advance of unknown future reward. A range of approaches address these challenges through reward design, providing intrinsic rewards to the agent that augment or replace the objective or extrinsic reward. The aim is to provide useful and proximal learning signals that drive behavior and learning in a way that improves performance on the main objective of interest (Ng, Harada, and Russell 1999; Barto, Singh, and Chentanez 2004; Singh et al. 2010). These intrinsic rewards are often hand-engineered, and based on either task-specific reward features developed from domain analysis, or task-general reward features, sometimes inspired by intrinsic mo-Copyright c null 2020, Association for the Advancement of Artificial Intelligence (www.aaai.org).


Disentangled Cumulants Help Successor Representations Transfer to New Tasks

arXiv.org Machine Learning

Biological intelligence can learn to solve many diverse tasks in a data efficient manner by re-using basic knowledge and skills from one task to another. Furthermore, many of such skills are acquired without explicit supervision in an intrinsically driven fashion. This is in contrast to the state-of-the-art reinforcement learning agents, which typically start learning each new task from scratch and struggle with knowledge transfer. In this paper we propose a principled way to learn a basis set of policies, which, when recombined through generalised policy improvement, come with guarantees on the coverage of the final task space. In particular, we concentrate on solving goal-based downstream tasks where the execution order of actions is not important. We demonstrate both theoretically and empirically that learning a small number of policies that reach intrinsically specified goal regions in a disentangled latent space can be re-used to quickly achieve a high level of performance on an exponentially larger number of externally specified, often significantly more complex downstream tasks. Our learning pipeline consists of two stages. First, the agent learns to perform intrinsically generated, goal-based tasks in the total absence of environmental rewards. Second, the agent leverages this experience to quickly achieve a high level of performance on numerous diverse externally specified tasks.


Sample Complexity of Reinforcement Learning using Linearly Combined Model Ensembles

arXiv.org Artificial Intelligence

Reinforcement learning (RL) methods have been shown to be capable of learning intelligent behavior in rich domains. However, this has largely been done in simulated domains without adequate focus on the process of building the simulator. In this paper, we consider a setting where we have access to an ensemble of pre-trained and possibly inaccurate simulators (models). We approximate the real environment using a state-dependent linear combination of the ensemble, where the coefficients are determined by the given state features and some unknown parameters. Our proposed algorithm provably learns a near-optimal policy with a sample complexity polynomial in the number of unknown parameters, and incurs no dependence on the size of the state (or action) space. As an extension, we also consider the more challenging problem of model selection, where the state features are unknown and can be chosen from a large candidate set. We provide exponential lower bounds that illustrate the fundamental hardness of this problem, and develop a provably efficient algorithm under additional natural assumptions.


Discovery of Useful Questions as Auxiliary Tasks

arXiv.org Artificial Intelligence

Arguably, intelligent agents ought to be able to discover their own questions so that in learning answers for them they learn unanticipated useful knowledge and skills; this departs from the focus in much of machine learning on agents learning answers to externally defined questions. We present a novel method for a reinforcement learning (RL) agent to discover questions formulated as general value functions or GVFs, a fairly rich form of knowledge representation. Specifically, our method uses non-myopic meta-gradients to learn GVF-questions such that learning answers to them, as an auxiliary task, induces useful representations for the main task faced by the RL agent. We demonstrate that auxiliary tasks based on the discovered GVFs are sufficient, on their own, to build representations that support main task learning, and that they do so better than popular hand-designed auxiliary tasks from the literature. Furthermore, we show, in the context of Atari 2600 videogames, how such auxiliary tasks, meta-learned alongside the main task, can improve the data efficiency of an actor-critic agent.


No Press Diplomacy: Modeling Multi-Agent Gameplay

arXiv.org Artificial Intelligence

Diplomacy is a seven-player non-stochastic, non-cooperative game, where agents acquire resources through a mix of teamwork and betrayal. Reliance on trust and coordination makes Diplomacy the first non-cooperative multi-agent benchmark for complex sequential social dilemmas in a rich environment. In this work, we focus on training an agent that learns to play the No Press version of Diplomacy where there is no dedicated communication channel between players. We present DipNet, a neural-network-based policy model for No Press Diplomacy. The model was trained on a new dataset of more than 150,000 human games. Our model is trained by supervised learning (SL) from expert trajectories, which is then used to initialize a reinforcement learning (RL) agent trained through self-play. Both the SL and RL agents demonstrate state-of-the-art No Press performance by beating popular rule-based bots.


Behaviour Suite for Reinforcement Learning

arXiv.org Artificial Intelligence

This paper introduces the Behaviour Suite for Reinforcement Learning, or bsuite for short. bsuite is a collection of carefully-designed experiments that investigate core capabilities of reinforcement learning (RL) agents with two objectives. First, to collect clear, informative and scalable problems that capture key issues in the design of general and efficient learning algorithms. Second, to study agent behaviour through their performance on these shared benchmarks. To complement this effort, we open source github.com/deepmind/bsuite, which automates evaluation and analysis of any agent on bsuite. This library facilitates reproducible and accessible research on the core issues in RL, and ultimately the design of superior learning algorithms. Our code is Python, and easy to use within existing projects. We include examples with OpenAI Baselines, Dopamine as well as new reference implementations. Going forward, we hope to incorporate more excellent experiments from the research community, and commit to a periodic review of bsuite from a committee of prominent researchers.


Learning Independently-Obtainable Reward Functions

arXiv.org Machine Learning

We present a novel method for learning a set of disentangled reward functions that sum to the original environment reward and are constrained to be independently obtainable. We define independent obtainability in terms of value functions with respect to obtaining one learned reward while pursuing another learned reward. Empirically, we illustrate that our method can learn meaningful reward decompositions in a variety of domains and that these decompositions exhibit some form of generalization performance when the environment's reward is modified. Theoretically, we derive results about the effect of maximizing our method's objective on the resulting reward functions and their corresponding optimal policies.


Completing State Representations using Spectral Learning

Neural Information Processing Systems

A central problem in dynamical system modeling is state discovery--that is, finding a compact summary of the past that captures the information needed to predict the future. Predictive State Representations (PSRs) enable clever spectral methods for state discovery; however, while consistent in the limit of infinite data, these methods often suffer from poor performance in the low data regime. In this paper we develop a novel algorithm for incorporating domain knowledge, in the form of an imperfect state representation, as side information to speed spectral learning for PSRs. We prove theoretical results characterizing the relevance of a user-provided state representation, and design spectral algorithms that can take advantage of a relevant representation. Our algorithm utilizes principal angles to extract the relevant components of the representation, and is robust to misspecification. Empirical evaluation on synthetic HMMs, an aircraft identification domain, and a gene splice dataset shows that, even with weak domain knowledge, the algorithm can significantly outperform standard PSR learning.


On Learning Intrinsic Rewards for Policy Gradient Methods

Neural Information Processing Systems

In many sequential decision making tasks, it is challenging to design reward functions that help an RL agent efficiently learn behavior that is considered good by the agent designer. A number of different formulations of the reward-design problem have been proposed in the literature. In this paper we build on the Optimal Rewards Framework of Singh et al. [2010] that defines the optimal intrinsic reward function as one that when used by an RL agent achieves behavior that optimizes the task-specifying or extrinsic reward function. Previous work in this framework has shown how good intrinsic reward functions can be learned for lookahead search based planning agents. Whether it is possible to learn intrinsic reward functions for learning agents remains an open problem. In this paper we derive a novel algorithm for learning intrinsic rewards for policy-gradient based learning agents. We compare the performance of an augmented agent that uses our algorithm to provide additive intrinsic rewards to an A2C-based policy learner (for Atari games) and a PPO-based policy learner (for Mujoco domains) with a baseline agent that uses the same policy learners but with only extrinsic rewards. We also compare our method with using a constant "live bonus" and with using a count-based exploration bonus (i.e., pixel-SimHash). Our results show improved performance on most but not all of the domains.