Goto

Collaborating Authors

 Singh, Gaurav


SCARP: 3D Shape Completion in ARbitrary Poses for Improved Grasping

arXiv.org Artificial Intelligence

Recovering full 3D shapes from partial observations is a challenging task that has been extensively addressed in the computer vision community. Many deep learning methods tackle this problem by training 3D shape generation networks to learn a prior over the full 3D shapes. In this training regime, the methods expect the inputs to be in a fixed canonical form, without which they fail to learn a valid prior over the 3D shapes. We propose SCARP, a model that performs Shape Completion in ARbitrary Poses. Given a partial pointcloud of an object, SCARP learns a disentangled feature representation of pose and shape by relying on rotationally equivariant pose features and geometric shape features trained using a multi-tasking objective. Unlike existing methods that depend on an external canonicalization, SCARP performs canonicalization, pose estimation, and shape completion in a single network, improving the performance by 45% over the existing baselines. In this work, we use SCARP for improving grasp proposals on tabletop objects. By completing partial tabletop objects directly in their observed poses, SCARP enables a SOTA grasp proposal network improve their proposals by 71.2% on partial shapes. Project page: https://bipashasen.github.io/scarp


Objects as Spatio-Temporal 2.5D points

arXiv.org Artificial Intelligence

Determining accurate bird's eye view (BEV) positions of objects and tracks in a scene is vital for various perception tasks including object interactions mapping, scenario extraction etc., however, the level of supervision required to accomplish that is extremely challenging to procure. We propose a light-weight, weakly supervised method to estimate 3D position of objects by jointly learning to regress the 2D object detections and scene's depth prediction in a single feed-forward pass of a network. Our proposed method extends a center-point based single-shot object detector, and introduces a novel object representation where each object is modeled as a BEV point spatio-temporally, without the need of any 3D or BEV annotations for training and LiDAR data at query time. The approach leverages readily available 2D object supervision along with LiDAR point clouds (used only during training) to jointly train a single network, that learns to predict 2D object detection alongside the whole scene's depth, to spatio-temporally model object tracks as points in BEV. The proposed method is computationally over $\sim$10x efficient compared to recent SOTA approaches while achieving comparable accuracies on KITTI tracking benchmark.


Structured Multi-Label Biomedical Text Tagging via Attentive Neural Tree Decoding

arXiv.org Machine Learning

We propose a model for tagging unstructured texts with an arbitrary number of terms drawn from a tree-structured vocabulary (i.e., an ontology). We treat this as a special case of sequence-to-sequence learning in which the decoder begins at the root node of an ontological tree and recursively elects to expand child nodes as a function of the input text, the current node, and the latent decoder state. In our experiments the proposed method outperforms state-of-the-art approaches on the important task of automatically assigning MeSH terms to biomedical abstracts.


Faster Convergence & Generalization in DNNs

arXiv.org Machine Learning

Deep neural networks have gained tremendous popularity in last few years. They have been applied for the task of classification in almost every domain. Despite the success, deep networks can be incredibly slow to train for even moderate sized models on sufficiently large datasets. Additionally, these networks require large amounts of data to be able to generalize. The importance of speeding up convergence, and generalization in deep networks can not be overstated. In this work, we develop an optimization algorithm based on generalized-optimal updates derived from minibatches that lead to faster convergence. Towards the end, we demonstrate on two benchmark datasets that the proposed method achieves two orders of magnitude speed up over traditional back-propagation, and is more robust to noise/over-fitting.