Singh, Gagandeep
Provable Defense Against Geometric Transformations
Yang, Rem, Laurel, Jacob, Misailovic, Sasa, Singh, Gagandeep
Geometric image transformations that arise in the real world, such as scaling and rotation, have been shown to easily deceive deep neural networks (DNNs). Hence, training DNNs to be certifiably robust to these perturbations is critical. However, no prior work has been able to incorporate the objective of deterministic certified robustness against geometric transformations into the training procedure, as existing verifiers are exceedingly slow. To address these challenges, we propose the first provable defense for deterministic certified geometric robustness. Our framework leverages a novel GPU-optimized verifier that can certify images between 60$\times$ to 42,600$\times$ faster than existing geometric robustness verifiers, and thus unlike existing works, is fast enough for use in training. Across multiple datasets, our results show that networks trained via our framework consistently achieve state-of-the-art deterministic certified geometric robustness and clean accuracy. Furthermore, for the first time, we verify the geometric robustness of a neural network for the challenging, real-world setting of autonomous driving.
Interpreting Robustness Proofs of Deep Neural Networks
Banerjee, Debangshu, Singh, Avaljot, Singh, Gagandeep
In recent years numerous methods have been developed to formally verify the robustness of deep neural networks (DNNs). Though the proposed techniques are effective in providing mathematical guarantees about the DNNs behavior, it is not clear whether the proofs generated by these methods are human-interpretable. In this paper, we bridge this gap by developing new concepts, algorithms, and representations to generate human understandable interpretations of the proofs. Leveraging the proposed method, we show that the robustness proofs of standard DNNs rely on spurious input features, while the proofs of DNNs trained to be provably robust filter out even the semantically meaningful features. The proofs for the DNNs combining adversarial and provably robust training are the most effective at selectively filtering out spurious features as well as relying on human-understandable input features.
Robustness Certification for Point Cloud Models
Lorenz, Tobias, Ruoss, Anian, Balunović, Mislav, Singh, Gagandeep, Vechev, Martin
The use of deep 3D point cloud models in safety-critical applications, such as autonomous driving, dictates the need to certify the robustness of these models to semantic transformations. This is technically challenging as it requires a scalable verifier tailored to point cloud models that handles a wide range of semantic 3D transformations. In this work, we address this challenge and introduce 3DCertify, the first verifier able to certify robustness of point cloud models. 3DCertify is based on two key insights: (i) a generic relaxation based on first-order Taylor approximations, applicable to any differentiable transformation, and (ii) a precise relaxation for global feature pooling, which is more complex than pointwise activations (e.g., ReLU or sigmoid) but commonly employed in point cloud models. We demonstrate the effectiveness of 3DCertify by performing an extensive evaluation on a wide range of 3D transformations (e.g., rotation, twisting) for both classification and part segmentation tasks. For example, we can certify robustness against rotations by $\pm60^\circ$ for 95.7% of point clouds, and our max pool relaxation increases certification by up to 15.6%.
Precise Multi-Neuron Abstractions for Neural Network Certification
Müller, Mark Niklas, Makarchuk, Gleb, Singh, Gagandeep, Püschel, Markus, Vechev, Martin
Formal verification of neural networks is critical for their safe adoption in real-world applications. However, designing a verifier which can handle realistic networks in a precise manner remains an open and difficult challenge. In this paper, we take a major step in addressing this challenge and present a new framework, called PRIMA, that computes precise convex approximations of arbitrary non-linear activations. PRIMA is based on novel approximation algorithms that compute the convex hull of polytopes, leveraging concepts from computational geometry. The algorithms have polynomial complexity, yield fewer constraints, and minimize precision loss. We evaluate the effectiveness of PRIMA on challenging neural networks with ReLU, Sigmoid, and Tanh activations. Our results show that PRIMA is significantly more precise than the state-of-the-art, verifying robustness for up to 16%, 30%, and 34% more images than prior work on ReLU-, Sigmoid-, and Tanh-based networks, respectively.
pseudo-Bayesian Neural Networks for detecting Out of Distribution Inputs
Singh, Gagandeep, Mishra, Deepak
Conventional Bayesian Neural Networks (BNNs) are known to be capable of providing multiple outputs for a single input, the variations in which can be utilised to detect Out of Distribution (OOD) inputs. BNNs are difficult to train due to their sensitivity towards the choice of priors. To alleviate this issue, we propose pseudo-BNNs where instead of learning distributions over weights, we use point estimates and perturb weights at the time of inference. We modify the cost function of conventional BNNs and use it to learn parameters for the purpose of injecting right amount of random perturbations to each of the weights of a neural network with point estimate. In order to effectively segregate OOD inputs from In Distribution (ID) inputs using multiple outputs, we further propose two measures, derived from the index of dispersion and entropy of probability distributions, and combine them with the proposed pseudo-BNNs. Overall, this combination results in a principled technique to detect OOD samples at the time of inference. We evaluate our technique on a wide variety of neural network architectures and image classification datasets. We observe that our method achieves state of the art results and beats the related previous work on various metrics such as FPR at 95% TPR, AUROC, AUPR and Detection Error by just using 2 to 5 samples of weights per input.
Scalable Inference of Symbolic Adversarial Examples
Dimitrov, Dimitar I., Singh, Gagandeep, Gehr, Timon, Vechev, Martin
We present a novel method for generating symbolic adversarial examples: input regions guaranteed to only contain adversarial examples for the given neural network. These regions can generate real-world adversarial examples as they summarize trillions of adversarial examples. We theoretically show that computing optimal symbolic adversarial examples is computationally expensive. We present a method for approximating optimal examples in a scalable manner. Our method first selectively uses adversarial attacks to generate a candidate region and then prunes this region with hyperplanes that fit points obtained via specialized sampling. It iterates until arriving at a symbolic adversarial example for which it can prove, via state-of-the-art convex relaxation techniques, that the region only contains adversarial examples. Our experimental results demonstrate that our method is practically effective: it only needs a few thousand attacks to infer symbolic summaries guaranteed to contain $\approx 10^{258}$ adversarial examples.
Neural Network Robustness Verification on GPUs
Müller, Christoph, Singh, Gagandeep, Püschel, Markus, Vechev, Martin
Certifying the robustness of neural networks against adversarial attacks is critical to their reliable adoption in real-world systems including autonomous driving and medical diagnosis. Unfortunately, state-of-the-art verifiers either do not scale to larger networks or are too imprecise to prove robustness, which limits their practical adoption. In this work, we introduce GPUPoly, a scalable verifier that can prove the robustness of significantly larger deep neural networks than possible with prior work. The key insight behind GPUPoly is the design of custom, sound polyhedra algorithms for neural network verification on a GPU. Our algorithms leverage the available GPU parallelism and the inherent sparsity of the underlying neural network verification task. GPUPoly scales to very large networks: for example, it can prove the robustness of a 1M neuron, 34-layer deep residual network in about 1 minute. We believe GPUPoly is a promising step towards the practical verification of large real-world networks.
Fast and Effective Robustness Certification for Recurrent Neural Networks
Ryou, Wonryong, Chen, Jiayu, Balunovic, Mislav, Singh, Gagandeep, Dan, Andrei, Vechev, Martin
We present a precise and scalable verifier for recurrent neural networks, called R2. The verifier is based on two key ideas: (i) a method to compute tight linear convex relaxations of a recurrent update function via sampling and optimization, and (ii) a technique to optimize convex combinations of multiple bounds for each neuron instead of a single bound as previously done. Using R2, we present the first study of certifying a non-trivial use case of recurrent neural networks, namely speech classification. This required us to also develop custom convex relaxations for the general operations that make up speech preprocessing. Our evaluation across a number of recurrent architectures in computer vision and speech domains shows that these networks are out of reach for existing methods as these are an order of magnitude slower than R2, while R2 successfully verified robustness in many cases.
A Provable Defense for Deep Residual Networks
Mirman, Matthew, Singh, Gagandeep, Vechev, Martin
We present a training system, which can provably defend significantly larger neural networks than previously possible, including ResNet-34 and DenseNet-100. Our approach is based on differentiable abstract interpretation and introduces two novel concepts: (i) abstract layers for fine-tuning the precision and scalability of the abstraction, (ii) a flexible domain specific language (DSL) for describing training objectives that combine abstract and concrete losses with arbitrary specifications. Our training method is implemented in the DiffAI system.
Fast and Effective Robustness Certification
Singh, Gagandeep, Gehr, Timon, Mirman, Matthew, Püschel, Markus, Vechev, Martin
We present a new method and system, called DeepZ, for certifying neural network robustness based on abstract interpretation. Compared to state-of-the-art automated verifiers for neural networks, DeepZ: (i) handles ReLU, Tanh and Sigmoid activation functions, (ii) supports feedforward, convolutional, and residual architectures, (iii) is significantly more scalable and precise, and (iv) and is sound with respect to floating point arithmetic. These benefits are due to carefully designed approximations tailored to the setting of neural networks. As an example, DeepZ achieves a verification accuracy of 97% on a large network with 88, 500 hidden units under L attack with ɛ 0.1 with an average runtime of 133 seconds.