Not enough data to create a plot.
Try a different view from the menu above.
Singh, Anikait
Pre-Training for Robots: Offline RL Enables Learning New Tasks from a Handful of Trials
Kumar, Aviral, Singh, Anikait, Ebert, Frederik, Nakamoto, Mitsuhiko, Yang, Yanlai, Finn, Chelsea, Levine, Sergey
Progress in deep learning highlights the tremendous potential of utilizing diverse robotic datasets for attaining effective generalization and makes it enticing to consider leveraging broad datasets for attaining robust generalization in robotic learning as well. However, in practice, we often want to learn a new skill in a new environment that is unlikely to be contained in the prior data. Therefore we ask: how can we leverage existing diverse offline datasets in combination with small amounts of task-specific data to solve new tasks, while still enjoying the generalization benefits of training on large amounts of data? In this paper, we demonstrate that end-to-end offline RL can be an effective approach for doing this, without the need for any representation learning or vision-based pre-training. We present pre-training for robots (PTR), a framework based on offline RL that attempts to effectively learn new tasks by combining pre-training on existing robotic datasets with rapid fine-tuning on a new task, with as few as 10 demonstrations. PTR utilizes an existing offline RL method, conservative Q-learning (CQL), but extends it to include several crucial design decisions that enable PTR to actually work and outperform a variety of prior methods. To our knowledge, PTR is the first RL method that succeeds at learning new tasks in a new domain on a real WidowX robot with as few as 10 task demonstrations, by effectively leveraging an existing dataset of diverse multi-task robot data collected in a variety of toy kitchens. We also demonstrate that PTR can enable effective autonomous fine-tuning and improvement in a handful of trials, without needing any demonstrations. An accompanying overview video can be found in the supplementary material and at thi URL: https://sites.google.com/view/ptr-final/
Robotic Offline RL from Internet Videos via Value-Function Pre-Training
Bhateja, Chethan, Guo, Derek, Ghosh, Dibya, Singh, Anikait, Tomar, Manan, Vuong, Quan, Chebotar, Yevgen, Levine, Sergey, Kumar, Aviral
Pre-training on Internet data has proven to be a key ingredient for broad generalization in many modern ML systems. What would it take to enable such capabilities in robotic reinforcement learning (RL)? Offline RL methods, which learn from datasets of robot experience, offer one way to leverage prior data into the robotic learning pipeline. However, these methods have a "type mismatch" with video data (such as Ego4D), the largest prior datasets available for robotics, since video offers observation-only experience without the action or reward annotations needed for RL methods. In this paper, we develop a system for leveraging large-scale human video datasets in robotic offline RL, based entirely on learning value functions via temporal-difference learning. We show that value learning on video datasets learns representations that are more conducive to downstream robotic offline RL than other approaches for learning from video data. Our system, called V-PTR, combines the benefits of pre-training on video data with robotic offline RL approaches that train on diverse robot data, resulting in value functions and policies for manipulation tasks that perform better, act robustly, and generalize broadly. On several manipulation tasks on a real WidowX robot, our framework produces policies that greatly improve over prior methods. Our video and additional details can be found at https://dibyaghosh.com/vptr/
RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control
Brohan, Anthony, Brown, Noah, Carbajal, Justice, Chebotar, Yevgen, Chen, Xi, Choromanski, Krzysztof, Ding, Tianli, Driess, Danny, Dubey, Avinava, Finn, Chelsea, Florence, Pete, Fu, Chuyuan, Arenas, Montse Gonzalez, Gopalakrishnan, Keerthana, Han, Kehang, Hausman, Karol, Herzog, Alexander, Hsu, Jasmine, Ichter, Brian, Irpan, Alex, Joshi, Nikhil, Julian, Ryan, Kalashnikov, Dmitry, Kuang, Yuheng, Leal, Isabel, Lee, Lisa, Lee, Tsang-Wei Edward, Levine, Sergey, Lu, Yao, Michalewski, Henryk, Mordatch, Igor, Pertsch, Karl, Rao, Kanishka, Reymann, Krista, Ryoo, Michael, Salazar, Grecia, Sanketi, Pannag, Sermanet, Pierre, Singh, Jaspiar, Singh, Anikait, Soricut, Radu, Tran, Huong, Vanhoucke, Vincent, Vuong, Quan, Wahid, Ayzaan, Welker, Stefan, Wohlhart, Paul, Wu, Jialin, Xia, Fei, Xiao, Ted, Xu, Peng, Xu, Sichun, Yu, Tianhe, Zitkovich, Brianna
We study how vision-language models trained on Internet-scale data can be incorporated directly into end-to-end robotic control to boost generalization and enable emergent semantic reasoning. Our goal is to enable a single end-to-end trained model to both learn to map robot observations to actions and enjoy the benefits of large-scale pretraining on language and vision-language data from the web. To this end, we propose to co-fine-tune state-of-the-art vision-language models on both robotic trajectory data and Internet-scale vision-language tasks, such as visual question answering. In contrast to other approaches, we propose a simple, general recipe to achieve this goal: in order to fit both natural language responses and robotic actions into the same format, we express the actions as text tokens and incorporate them directly into the training set of the model in the same way as natural language tokens. We refer to such category of models as vision-language-action models (VLA) and instantiate an example of such a model, which we call RT-2. Our extensive evaluation (6k evaluation trials) shows that our approach leads to performant robotic policies and enables RT-2 to obtain a range of emergent capabilities from Internet-scale training. This includes significantly improved generalization to novel objects, the ability to interpret commands not present in the robot training data (such as placing an object onto a particular number or icon), and the ability to perform rudimentary reasoning in response to user commands (such as picking up the smallest or largest object, or the one closest to another object). We further show that incorporating chain of thought reasoning allows RT-2 to perform multi-stage semantic reasoning, for example figuring out which object to pick up for use as an improvised hammer (a rock), or which type of drink is best suited for someone who is tired (an energy drink).
Offline RL With Realistic Datasets: Heteroskedasticity and Support Constraints
Singh, Anikait, Kumar, Aviral, Vuong, Quan, Chebotar, Yevgen, Levine, Sergey
Offline reinforcement learning (RL) learns policies entirely from static datasets, thereby avoiding the challenges associated with online data collection. Practical applications of offline RL will inevitably require learning from datasets where the variability of demonstrated behaviors changes non-uniformly across the state space. For example, at a red light, nearly all human drivers behave similarly by stopping, but when merging onto a highway, some drivers merge quickly, efficiently, and safely, while many hesitate or merge dangerously. Both theoretically and empirically, we show that typical offline RL methods, which are based on distribution constraints fail to learn from data with such non-uniform variability, due to the requirement to stay close to the behavior policy to the same extent across the state space. Ideally, the learned policy should be free to choose per state how closely to follow the behavior policy to maximize long-term return, as long as the learned policy stays within the support of the behavior policy. To instantiate this principle, we reweight the data distribution in conservative Q-learning (CQL) to obtain an approximate support constraint formulation. The reweighted distribution is a mixture of the current policy and an additional policy trained to mine poor actions that are likely under the behavior policy. Our method, CQL (ReDS), is simple, theoretically motivated, and improves performance across a wide range of offline RL problems in Atari games, navigation, and pixel-based manipulation.