Plotting

 Singh, Aakash


Data to Decisions: A Computational Framework to Identify skill requirements from Advertorial Data

arXiv.org Artificial Intelligence

Among the factors of production, human capital or skilled manpower is the one that keeps evolving and adapts to changing conditions and resources. This adaptability makes human capital the most crucial factor in ensuring a sustainable growth of industry/sector. As new technologies are developed and adopted, the new generations are required to acquire skills in newer technologies in order to be employable. At the same time professionals are required to upskill and reskill themselves to remain relevant in the industry. There is however no straightforward method to identify the skill needs of the industry at a given point of time. Therefore, this paper proposes a data to decision framework that can successfully identify the desired skill set in a given area by analysing the advertorial data collected from popular online job portals and supplied as input to the framework. The proposed framework uses techniques of statistical analysis, data mining and natural language processing for the purpose. The applicability of the framework is demonstrated on CS&IT job advertisement data from India. The analytical results not only provide useful insights about current state of skill needs in CS&IT industry but also provide practical implications to prospective job applicants, training agencies, and institutions of higher education & professional training.


Exploring Deep Learning Methods for Classification of SAR Images: Towards NextGen Convolutions via Transformers

arXiv.org Artificial Intelligence

Images generated by high-resolution SAR have vast areas of application as they can work better in adverse light and weather conditions. One such area of application is in the military systems. This study is an attempt to explore the suitability of current state-of-the-art models introduced in the domain of computer vision for SAR target classification (MSTAR). Since the application of any solution produced for military systems would be strategic and real-time, accuracy is often not the only criterion to measure its performance. Other important parameters like prediction time and input resiliency are equally important. The paper deals with these issues in the context of SAR images. Experimental results show that deep learning models can be suitably applied in the domain of SAR image classification with the desired performance levels.