Goto

Collaborating Authors

 Singer, Yoram


Online Passive-Aggressive Algorithms

Neural Information Processing Systems

We present a unified view for online classification, regression, and uniclass problems.This view leads to a single algorithmic framework for the three problems. We prove worst case loss bounds for various algorithms for both the realizable case and the non-realizable case. A conversion of our main online algorithm to the setting of batch learning is also discussed. Theend result is new algorithms and accompanying loss bounds for the hinge-loss.


Online Classification on a Budget

Neural Information Processing Systems

Online algorithms for classification often require vast amounts of memory andcomputation time when employed in conjunction with kernel functions. In this paper we describe and analyze a simple approach for an on-the-fly reduction of the number of past examples used for prediction. Experiments performed with real datasets show that using the proposed algorithmic approach with a single epoch is competitive with the support vectormachine (SVM) although the latter, being a batch algorithm, accesses each training example multiple times.


Multiclass Learning by Probabilistic Embeddings

Neural Information Processing Systems

We describe a new algorithmic framework for learning multiclass categorization problems. In this framework a multiclass predictor is composed of a pair of embeddings that map both instances and labels into a common space. In this space each instance is assigned the label it is nearest to. We outline and analyze an algorithm, termed Bunching, for learning the pair of embeddings from labeled data. A key construction in the analysis of the algorithm is the notion of probabilistic output codes, a generalization of error correcting output codes (ECOC). Furthermore, the method of multiclass categorization using ECOC is shown to be an instance of Bunching. We demonstrate the advantage of Bunching over ECOC by comparing their performance on numerous categorization problems.


Kernel Design Using Boosting

Neural Information Processing Systems

The focus of the paper is the problem of learning kernel operators from empirical data. We cast the kernel design problem as the construction of an accurate kernel from simple (and less accurate) base kernels. We use the boosting paradigm to perform the kernel construction process. To do so, we modify the booster so as to accommodate kernel operators. We also devise an efficient weak-learner for simple kernels that is based on generalized eigen vector decomposition. We demonstrate the effectiveness of our approach on synthetic data and on the USPS dataset. On the USPS dataset, the performance of the Perceptron algorithm with learned kernels is systematically better than a fixed RBF kernel.


Discriminative Binaural Sound Localization

Neural Information Processing Systems

Time difference of arrival (TDOA) is commonly used to estimate the azimuth of a source in a microphone array. The most common methods to estimate TDOA are based on finding extrema in generalized crosscorrelation waveforms. In this paper we apply microphone array techniques to a manikin head. By considering the entire cross-correlation waveform we achieve azimuth prediction accuracy that exceeds extrema locating methods. We do so by quantizing the azimuthal angle and treating the prediction problem as a multiclass categorization task. We demonstrate the merits of our approach by evaluating the various approaches on Sony's AIBO robot.


Multiclass Learning by Probabilistic Embeddings

Neural Information Processing Systems

We describe a new algorithmic framework for learning multiclass categorization problems. In this framework a multiclass predictor is composed of a pair of embeddings that map both instances and labels into a common space. In this space each instance is assigned the label it is nearest to. We outline and analyze an algorithm, termed Bunching, for learning the pair of embeddings from labeled data. A key construction in the analysis of the algorithm is the notion of probabilistic output codes, a generalization of error correcting output codes (ECOC). Furthermore, the method of multiclass categorization using ECOC is shown to be an instance of Bunching. We demonstrate the advantage of Bunching over ECOC by comparing their performance on numerous categorization problems.


Spikernels: Embedding Spiking Neurons in Inner-Product Spaces

Neural Information Processing Systems

Inner-product operators, often referred to as kernels in statistical learning, define a mapping from some input space into a feature space. The focus of this paper is the construction of biologically-motivated kernels for cortical activities. The kernels we derive, termed Spikernels, map spike count sequences into an abstract vector space in which we can perform various prediction tasks. We discuss in detail the derivation of Spikernels and describe an efficient algorithm for computing their value on any two sequences of neural population spike counts. We demonstrate the merits of our modeling approach using the Spikernel and various standard kernels for the task of predicting hand movement velocities from cortical recordings. In all of our experiments all the kernels we tested outperform the standard scalar product used in regression with the Spikernel consistently achieving the best performance.


Multiclass Learning by Probabilistic Embeddings

Neural Information Processing Systems

We describe a new algorithmic framework for learning multiclass categorization problems.In this framework a multiclass predictor is composed of a pair of embeddings that map both instances and labels into a common space. In this space each instance is assigned the label it is nearest to. We outline and analyze an algorithm, termed Bunching, for learning the pair of embeddings from labeled data. A key construction in the analysis of the algorithm is the notion of probabilistic output codes, a generalization oferror correcting output codes (ECOC). Furthermore, the method of multiclass categorization using ECOC is shown to be an instance of Bunching. We demonstrate the advantage of Bunching over ECOC by comparing their performance on numerous categorization problems.


Kernel Design Using Boosting

Neural Information Processing Systems

The focus of the paper is the problem of learning kernel operators from empirical data. We cast the kernel design problem as the construction of an accurate kernel from simple (and less accurate) base kernels. We use the boosting paradigm to perform the kernel construction process. To do so, we modify the booster so as to accommodate kernel operators. We also devise an efficient weak-learner for simple kernels that is based on generalized eigen vector decomposition. We demonstrate the effectiveness ofour approach on synthetic data and on the USPS dataset. On the USPS dataset, the performance of the Perceptron algorithm with learned kernels is systematically better than a fixed RBF kernel.


Discriminative Binaural Sound Localization

Neural Information Processing Systems

Time difference of arrival (TDOA) is commonly used to estimate the azimuth ofa source in a microphone array. The most common methods to estimate TDOA are based on finding extrema in generalized crosscorrelation waveforms.In this paper we apply microphone array techniques to a manikin head. By considering the entire cross-correlation waveform we achieve azimuth prediction accuracy that exceeds extrema locating methods. We do so by quantizing the azimuthal angle and treating the prediction problem as a multiclass categorization task. We demonstrate the merits of our approach by evaluating the various approaches onSony's AIBO robot.