Sick, Bernhard
Cooperative Starting Movement Detection of Cyclists Using Convolutional Neural Networks and a Boosted Stacking Ensemble
Bieshaar, Maarten, Zernetsch, Stefan, Hubert, Andreas, Sick, Bernhard, Doll, Konrad
In future, vehicles and other traffic participants will be interconnected and equipped with various types of sensors, allowing for cooperation on different levels, such as situation prediction or intention detection. In this article we present a cooperative approach for starting movement detection of cyclists using a boosted stacking ensemble approach realizing feature- and decision level cooperation. We introduce a novel method based on a 3D Convolutional Neural Network (CNN) to detect starting motions on image sequences by learning spatio-temporal features. The CNN is complemented by a smart device based starting movement detection originating from smart devices carried by the cyclist. Both model outputs are combined in a stacking ensemble approach using an extreme gradient boosting classifier resulting in a fast and yet robust cooperative starting movement detector. We evaluate our cooperative approach on real-world data originating from experiments with 49 test subjects consisting of 84 starting motions.
Detecting Intentions of Vulnerable Road Users Based on Collective Intelligence
Bieshaar, Maarten, Reitberger, Gรผnther, Zernetsch, Stefan, Sick, Bernhard, Fuchs, Erich, Doll, Konrad
Vulnerable road users (VRUs, i.e. cyclists and pedestrians) will play an important role in future traffic. To avoid accidents and achieve a highly efficient traffic flow, it is important to detect VRUs and to predict their intentions. In this article a holistic approach for detecting intentions of VRUs by cooperative methods is presented. The intention detection consists of basic movement primitive prediction, e.g. standing, moving, turning, and a forecast of the future trajectory. Vehicles equipped with sensors, data processing systems and communication abilities, referred to as intelligent vehicles, acquire and maintain a local model of their surrounding traffic environment, e.g. crossing cyclists. Heterogeneous, open sets of agents (cooperating and interacting vehicles, infrastructure, e.g. cameras and laser scanners, and VRUs equipped with smart devices and body-worn sensors) exchange information forming a multi-modal sensor system with the goal to reliably and robustly detect VRUs and their intentions under consideration of real time requirements and uncertainties. The resulting model allows to extend the perceptual horizon of the individual agent beyond their own sensory capabilities, enabling a longer forecast horizon. Concealments, implausibilities and inconsistencies are resolved by the collective intelligence of cooperating agents. Novel techniques of signal processing and modelling in combination with analytical and learning based approaches of pattern and activity recognition are used for detection, as well as intention prediction of VRUs. Cooperation, by means of probabilistic sensor and knowledge fusion, takes place on the level of perception and intention recognition. Based on the requirements of the cooperative approach for the communication a new strategy for an ad hoc network is proposed.
Quantifying the Influences on Probabilistic Wind Power Forecasts
Schreiber, Jens, Sick, Bernhard
In recent years, probabilistic forecasts techniques were proposed in research as well as in applications to integrate volatile renewable energy resources into the electrical grid. These techniques allow decision makers to take the uncertainty of the prediction into account and, therefore, to devise optimal decisions, e.g., related to costs and risks in the electrical grid. However, it was yet not studied how the input, such as numerical weather predictions, affects the model output of forecasting models in detail. Therefore, we examine the potential influences with techniques from the field of sensitivity analysis on three different black-box models to obtain insights into differences and similarities of these probabilistic models. The analysis shows a considerable number of potential influences in those models depending on, e.g., the predicted probability and the type of model. These effects motivate the need to take various influences into account when models are tested, analyzed, or compared. Nevertheless, results of the sensitivity analysis will allow us to select a model with advantages in the practical application.
Starting Movement Detection of Cyclists Using Smart Devices
Bieshaar, Maarten, Depping, Malte, Schneegans, Jan, Sick, Bernhard
In near future, vulnerable road users (VRUs) such as cyclists and pedestrians will be equipped with smart devices and wearables which are capable to communicate with intelligent vehicles and other traffic participants. Road users are then able to cooperate on different levels, such as in cooperative intention detection for advanced VRU protection. Smart devices can be used to detect intentions, e.g., an occluded cyclist intending to cross the road, to warn vehicles of VRUs, and prevent potential collisions. This article presents a human activity recognition approach to detect the starting movement of cyclists wearing smart devices. We propose a novel two-stage feature selection procedure using a score specialized for robust starting detection reducing the false positive detections and leading to understandable and interpretable features. The detection is modelled as a classification problem and realized by means of a machine learning classifier. We introduce an auxiliary class, that models starting movements and allows to integrate early movement indicators, i.e., body part movements indicating future behaviour. In this way we improve the robustness and reduce the detection time of the classifier. Our empirical studies with real-world data originating from experiments which involve 49 test subjects and consists of 84 starting motions show that we are able to detect the starting movements early. Our approach reaches an F1-score of 67 % within 0.33 s after the first movement of the bicycle wheel. Investigations concerning the device wearing location show that for devices worn in the trouser pocket the detector has less false detections and detects starting movements faster on average. We found that we can further improve the results when we train distinct classifiers for different wearing locations.
Coopetitive Soft Gating Ensemble
Deist, Stephan, Bieshaar, Maarten, Schreiber, Jens, Gensler, Andre, Sick, Bernhard
In this article, we proposed the Coopetititve Soft Gating Ensemble or CSGE for general machine learning tasks. The goal of machine learning is to create models which poses a high generalisation capability. But often problems are too complex to be solved by a single model. Therefore, ensemble methods combine predictions of multiple models. The CSGE comprises a comprehensible combination based on three different aspects relating to the overall global historical performance, the local-/situation-dependent and time-dependent performance of its ensemble members. The CSGE can be optimised according to arbitrary loss functions making it accessible for a wider range of problems. We introduce a novel training procedure including a hyper-parameter initialisation at its heart. We show that the CSGE approach reaches state-of-the-art performance for both classification and regression tasks. Still, the CSGE allows to quantify the influence of all base estimators by means of the three weighting aspects in a comprehensive way. In terms of Organic computing (OC), our CSGE approach combines multiple base models towards a self-organising complex system. Moreover, we provide a scikit-learn compatible implementation.
Cooperative Tracking of Cyclists Based on Smart Devices and Infrastructure
Reitberger, Gรผnther, Zernetsch, Stefan, Bieshaar, Maarten, Sick, Bernhard, Doll, Konrad, Fuchs, Erich
In future traffic scenarios, vehicles and other traffic participants will be interconnected and equipped with various types of sensors, allowing for cooperation based on data or information exchange. This article presents an approach to cooperative tracking of cyclists using smart devices and infrastructure-based sensors. A smart device is carried by the cyclists and an intersection is equipped with a wide angle stereo camera system. Two tracking models are presented and compared. The first model is based on the stereo camera system detections only, whereas the second model cooperatively combines the camera based detections with velocity and yaw rate data provided by the smart device. Our aim is to overcome limitations of tracking approaches based on single data sources. We show in numerical evaluations on scenes where cyclists are starting or turning right that the cooperation leads to an improvement in both the ability to keep track of a cyclist and the accuracy of the track particularly when it comes to occlusions in the visual system. We, therefore, contribute to the safety of vulnerable road users in future traffic.
A Multi-Scheme Ensemble Using Coopetitive Soft-Gating With Application to Power Forecasting for Renewable Energy Generation
Gensler, Andrรฉ, Sick, Bernhard
In this article, we propose a novel ensemble technique with a multi-scheme weighting based on a technique called coopetitive soft gating. This technique combines both, ensemble member competition and cooperation, in order to maximize the overall forecasting accuracy of the ensemble. The proposed algorithm combines the ideas of multiple ensemble paradigms (power forecasting model ensemble, weather forecasting model ensemble, and lagged ensemble) in a hierarchical structure. The technique is designed to be used in a flexible manner on single and multiple weather forecasting models, and for a variety of lead times. We compare the technique to other power forecasting models and ensemble techniques with a flexible number of weather forecasting models, which can have the same, or varying forecasting horizons. It is shown that the model is able to outperform those models on a number of publicly available data sets. The article closes with a discussion of properties of the proposed model which are relevant in its application.
Self-Adaptation of Activity Recognition Systems to New Sensors
Bannach, David, Jรคnicke, Martin, Rey, Vitor F., Tomforde, Sven, Sick, Bernhard, Lukowicz, Paul
Traditional activity recognition systems work on the basis of training, taking a fixed set of sensors into account. In this article, we focus on the question how pattern recognition can leverage new information sources without any, or with minimal user input. Thus, we present an approach for opportunistic activity recognition, where ubiquitous sensors lead to dynamically changing input spaces. Our method is a variation of well-established principles of machine learning, relying on unsupervised clustering to discover structure in data and inferring cluster labels from a small number of labeled dates in a semi-supervised manner. Elaborating the challenges, evaluations of over 3000 sensor combinations from three multi-user experiments are presented in detail and show the potential benefit of our approach.
Semi-Supervised Active Learning for Support Vector Machines: A Novel Approach that Exploits Structure Information in Data
Reitmaier, Tobias, Calma, Adrian, Sick, Bernhard
In our today's information society more and more data emerges, e.g.~in social networks, technical applications, or business applications. Companies try to commercialize these data using data mining or machine learning methods. For this purpose, the data are categorized or classified, but often at high (monetary or temporal) costs. An effective approach to reduce these costs is to apply any kind of active learning (AL) methods, as AL controls the training process of a classifier by specific querying individual data points (samples), which are then labeled (e.g., provided with class memberships) by a domain expert. However, an analysis of current AL research shows that AL still has some shortcomings. In particular, the structure information given by the spatial pattern of the (un)labeled data in the input space of a classification model (e.g.,~cluster information), is used in an insufficient way. In addition, many existing AL techniques pay too little attention to their practical applicability. To meet these challenges, this article presents several techniques that together build a new approach for combining AL and semi-supervised learning (SSL) for support vector machines (SVM) in classification tasks. Structure information is captured by means of probabilistic models that are iteratively improved at runtime when label information becomes available. The probabilistic models are considered in a selection strategy based on distance, density, diversity, and distribution (4DS strategy) information for AL and in a kernel function (Responsibility Weighted Mahalanobis kernel) for SVM. The approach fuses generative and discriminative modeling techniques. With 20 benchmark data sets and with the MNIST data set it is shown that our new solution yields significantly better results than state-of-the-art methods.
Variational Bayesian Inference for Hidden Markov Models With Multivariate Gaussian Output Distributions
Gruhl, Christian, Sick, Bernhard
Hidden Markov Models (HMM) have been used for several years in many time series analysis or pattern recognitions tasks. HMM are often trained by means of the Baum-Welch algorithm which can be seen as a special variant of an expectation maximization (EM) algorithm. Second-order training techniques such as Variational Bayesian Inference (VI) for probabilistic models regard the parameters of the probabilistic models as random variables and define distributions over these distribution parameters, hence the name of this technique. VI can also bee regarded as a special case of an EM algorithm. In this article, we bring both together and train HMM with multivariate Gaussian output distributions with VI. The article defines the new training technique for HMM. An evaluation based on some case studies and a comparison to related approaches is part of our ongoing work.