Sick, Bernhard
Multi-annotator Deep Learning: A Probabilistic Framework for Classification
Herde, Marek, Huseljic, Denis, Sick, Bernhard
Solving complex classification tasks using deep neural networks typically requires large amounts of annotated data. However, corresponding class labels are noisy when provided by error-prone annotators, e.g., crowdworkers. Training standard deep neural networks leads to subpar performances in such multi-annotator supervised learning settings. We address this issue by presenting a probabilistic training framework named multi-annotator deep learning (MaDL). A downstream ground truth and an annotator performance model are jointly trained in an end-to-end learning approach. The ground truth model learns to predict instances' true class labels, while the annotator performance model infers probabilistic estimates of annotators' performances. A modular network architecture enables us to make varying assumptions regarding annotators' performances, e.g., an optional class or instance dependency. Further, we learn annotator embeddings to estimate annotators' densities within a latent space as proxies of their potentially correlated annotations. Together with a weighted loss function, we improve the learning from correlated annotation patterns. In a comprehensive evaluation, we examine three research questions about multi-annotator supervised learning. Our findings show MaDL's state-of-the-art performance and robustness against many correlated, spamming annotators.
DADO -- Low-Cost Query Strategies for Deep Active Design Optimization
Decke, Jens, Gruhl, Christian, Rauch, Lukas, Sick, Bernhard
In this experience report, we apply deep active learning to the field of design optimization to reduce the number of computationally expensive numerical simulations. We are interested in optimizing the design of structural components, where the shape is described by a set of parameters. If we can predict the performance based on these parameters and consider only the promising candidates for simulation, there is an enormous potential for saving computing power. We present two selection strategies for self-optimization to reduce the computational cost in multi-objective design optimization problems. Our proposed methodology provides an intuitive approach that is easy to apply, offers significant improvements over random sampling, and circumvents the need for uncertainty estimation. We evaluate our strategies on a large dataset from the domain of fluid dynamics and introduce two new evaluation metrics to determine the model's performance. Findings from our evaluation highlights the effectiveness of our selection strategies in accelerating design optimization. We believe that the introduced method is easily transferable to other self-optimization problems.
Enhancing Multi-Objective Optimization through Machine Learning-Supported Multiphysics Simulation
Botache, Diego, Decke, Jens, Ripken, Winfried, Dornipati, Abhinay, Gรถtz-Hahn, Franz, Ayeb, Mohamed, Sick, Bernhard
Multiphysics simulations that involve multiple coupled physical phenomena quickly become computationally expensive. This imposes challenges for practitioners aiming to find optimal configurations for these problems satisfying multiple objectives, as optimization algorithms often require querying the simulation many times. This paper presents a methodological framework for training, self-optimizing, and self-organizing surrogate models to approximate and speed up Multiphysics simulations. We generate two real-world tabular datasets, which we make publicly available, and show that surrogate models can be trained on relatively small amounts of data to approximate the underlying simulations accurately. We conduct extensive experiments combining four machine learning and deep learning algorithms with two optimization algorithms and a comprehensive evaluation strategy. Finally, we evaluate the performance of our combined training and optimization pipeline by verifying the generated Pareto-optimal results using the ground truth simulations. We also employ explainable AI techniques to analyse our surrogates and conduct a preselection strategy to determine the most relevant features in our real-world examples. This approach lets us understand the underlying problem and identify critical partial dependencies.
Height Change Feature Based Free Space Detection
Schreck, Steven, Reichert, Hannes, Hetzel, Manuel, Doll, Konrad, Sick, Bernhard
In the context of autonomous forklifts, ensuring non-collision during travel, pick, and place operations is crucial. To accomplish this, the forklift must be able to detect and locate areas of free space and potential obstacles in its environment. However, this is particularly challenging in highly dynamic environments, such as factory sites and production halls, due to numerous industrial trucks and workers moving throughout the area. In this paper, we present a novel method for free space detection, which consists of the following steps. We introduce a novel technique for surface normal estimation relying on spherical projected LiDAR data. Subsequently, we employ the estimated surface normals to detect free space. The presented method is a heuristic approach that does not require labeling and can ensure real-time application due to high processing speed. The effectiveness of the proposed method is demonstrated through its application to a real-world dataset obtained on a factory site both indoors and outdoors, and its evaluation on the Semantic KITTI dataset [2]. We achieved a mean Intersection over Union (mIoU) score of 50.90 % on the benchmark dataset, with a processing speed of 105 Hz. In addition, we evaluated our approach on our factory site dataset. Our method achieved a mIoU score of 63.30 % at 54 Hz
Unraveling the Complexity of Splitting Sequential Data: Tackling Challenges in Video and Time Series Analysis
Botache, Diego, Dingel, Kristina, Huhnstock, Rico, Ehresmann, Arno, Sick, Bernhard
Splitting of sequential data, such as videos and time series, is an essential step in various data analysis tasks, including object tracking and anomaly detection. However, splitting sequential data presents a variety of challenges that can impact the accuracy and reliability of subsequent analyses. This concept article examines the challenges associated with splitting sequential data, including data acquisition, data representation, split ratio selection, setting up quality criteria, and choosing suitable selection strategies. We explore these challenges through two real-world examples: motor test benches and particle tracking in liquids.
ActiveGLAE: A Benchmark for Deep Active Learning with Transformers
Rauch, Lukas, Aรenmacher, Matthias, Huseljic, Denis, Wirth, Moritz, Bischl, Bernd, Sick, Bernhard
Deep active learning (DAL) seeks to reduce annotation costs by enabling the model to actively query instance annotations from which it expects to learn the most. Despite extensive research, there is currently no standardized evaluation protocol for transformer-based language models in the field of DAL. Diverse experimental settings lead to difficulties in comparing research and deriving recommendations for practitioners. To tackle this challenge, we propose the ActiveGLAE benchmark, a comprehensive collection of data sets and evaluation guidelines for assessing DAL. Our benchmark aims to facilitate and streamline the evaluation process of novel DAL strategies. Additionally, we provide an extensive overview of current practice in DAL with transformer-based language models. We identify three key challenges - data set selection, model training, and DAL settings - that pose difficulties in comparing query strategies. We establish baseline results through an extensive set of experiments as a reference point for evaluating future work. Based on our findings, we provide guidelines for researchers and practitioners.
Dataset of a parameterized U-bend flow for Deep Learning Applications
Decke, Jens, Wรผnsch, Olaf, Sick, Bernhard
This dataset contains 10,000 fluid flow and heat transfer simulations in U-bend shapes. Each of them is described by 28 design parameters, which are processed with the help of Computational Fluid Dynamics methods. The dataset provides a comprehensive benchmark for investigating various problems and methods from the field of design optimization. For these investigations supervised, semi-supervised and unsupervised deep learning approaches can be employed. One unique feature of this dataset is that each shape can be represented by three distinct data types including design parameter and objective combinations, five different resolutions of 2D images from the geometry and the solution variables of the numerical simulation, as well as a representation using the cell values of the numerical mesh. This third representation enables considering the specific data structure of numerical simulations for deep learning approaches. The source code and the container used to generate the data are published as part of this work.
A Survey on Cost Types, Interaction Schemes, and Annotator Performance Models in Selection Algorithms for Active Learning in Classification
Herde, Marek, Huseljic, Denis, Sick, Bernhard, Calma, Adrian
Pool-based active learning (AL) aims to optimize the annotation process (i.e., labeling) as the acquisition of annotations is often time-consuming and therefore expensive. For this purpose, an AL strategy queries annotations intelligently from annotators to train a high-performance classification model at a low annotation cost. Traditional AL strategies operate in an idealized framework. They assume a single, omniscient annotator who never gets tired and charges uniformly regardless of query difficulty. However, in real-world applications, we often face human annotators, e.g., crowd or in-house workers, who make annotation mistakes and can be reluctant to respond if tired or faced with complex queries. Recently, a wide range of novel AL strategies has been proposed to address these issues. They differ in at least one of the following three central aspects from traditional AL: (1) They explicitly consider (multiple) human annotators whose performances can be affected by various factors, such as missing expertise. (2) They generalize the interaction with human annotators by considering different query and annotation types, such as asking an annotator for feedback on an inferred classification rule. (3) They take more complex cost schemes regarding annotations and misclassifications into account. This survey provides an overview of these AL strategies and refers to them as real-world AL. Therefore, we introduce a general real-world AL strategy as part of a learning cycle and use its elements, e.g., the query and annotator selection algorithm, to categorize about 60 real-world AL strategies. Finally, we outline possible directions for future research in the field of AL.
Toward AI-enhanced online-characterization and shaping of ultrashort X-ray free-electron laser pulses
Dingel, Kristina, Otto, Thorsten, Marder, Lutz, Funke, Lars, Held, Arne, Savio, Sara, Hans, Andreas, Hartmann, Gregor, Meier, David, Viefhaus, Jens, Sick, Bernhard, Ehresmann, Arno, Ilchen, Markus, Helml, Wolfram
X-ray free-electron lasers (XFELs) as the world`s most brilliant light sources provide ultrashort X-ray pulses with durations typically on the order of femtoseconds. Recently, they have approached and entered the attosecond regime, which holds new promises for single-molecule imaging and studying nonlinear and ultrafast phenomena like localized electron dynamics. The technological evolution of XFELs toward well-controllable light sources for precise metrology of ultrafast processes was, however, hampered by the diagnostic capabilities for characterizing X-ray pulses at the attosecond frontier. In this regard, the spectroscopic technique of photoelectron angular streaking has successfully proven how to non-destructively retrieve the exact time-energy structure of XFEL pulses on a single-shot basis. By using artificial intelligence algorithms, in particular convolutional neural networks, we here show how this technique can be leveraged from its proof-of-principle stage toward routine diagnostics at XFELs, thus enhancing and refining their scientific access in all related disciplines.
Probabilistic Active Learning for Active Class Selection
Kottke, Daniel, Krempl, Georg, Stecklina, Marianne, von Rekowski, Cornelius Styp, Sabsch, Tim, Minh, Tuan Pham, Deliano, Matthias, Spiliopoulou, Myra, Sick, Bernhard
In machine learning, active class selection (ACS) algorithms aim to actively select a class and ask the oracle to provide an instance for that class to optimize a classifier's performance while minimizing the number of requests. In this paper, we propose a new algorithm (PAL-ACS) that transforms the ACS problem into an active learning task by introducing pseudo instances. These are used to estimate the usefulness of an upcoming instance for each class using the performance gain model from probabilistic active learning. Our experimental evaluation (on synthetic and real data) shows the advantages of our algorithm compared to state-of-the-art algorithms. It effectively prefers the sampling of difficult classes and thereby improves the classification performance.