Shultz, Thomas R.
Towards Machines that Trust: AI Agents Learn to Trust in the Trust Game
Nobandegani, Ardavan S., Rish, Irina, Shultz, Thomas R.
Widely considered a cornerstone of human morality, trust shapes many aspects of human social interactions. In this work, we present a theoretical analysis of the $\textit{trust game}$, the canonical task for studying trust in behavioral and brain sciences, along with simulation results supporting our analysis. Specifically, leveraging reinforcement learning (RL) to train our AI agents, we systematically investigate learning trust under various parameterizations of this task. Our theoretical analysis, corroborated by the simulations results presented, provides a mathematical basis for the emergence of trust in the trust game.
Bringing Order to the Cognitive Fallacy Zoo
Nobandegani, Ardavan S., Campoli, William, Shultz, Thomas R.
In the eyes of a rationalist like Descartes or Spinoza, human reasoning is flawless, marching toward uncovering ultimate truth. A few centuries later, however, culminating in the work of Kahneman and Tversky, human reasoning was portrayed as anything but flawless, filled with numerous misjudgments, biases, and cognitive fallacies. With further investigations, new cognitive fallacies continually emerged, leading to a state of affairs which can fairly be characterized as the cognitive fallacy zoo! In this largely methodological work, we formally present a principled way to bring order to this zoo. We introduce the idea of establishing implication relationships (IRs) between cognitive fallacies, formally characterizing how one fallacy implies another. IR is analogous to, and partly inspired by, the fundamental concept of reduction in computational complexity theory. We present several examples of IRs involving experimentally well-documented cognitive fallacies: base-rate neglect, availability bias, conjunction fallacy, decoy effect, framing effect, and Allais paradox. We conclude by discussing how our work: (i) allows for identifying those pivotal cognitive fallacies whose investigation would be the most rewarding research agenda, and importantly (ii) permits a systematized, guided research program on cognitive fallacies, motivating influential theoretical as well as experimental avenues of future research.
Over-representation of Extreme Events in Decision-Making: A Rational Metacognitive Account
Nobandegani, Ardavan S., Castanheira, Kevin da Silva, Otto, A. Ross, Shultz, Thomas R.
The Availability bias, manifested in the over-representation of extreme eventualities in decision-making, is a well-known cognitive bias, and is generally taken as evidence of human irrationality. In this work, we present the first rational, metacognitive account of the Availability bias, formally articulated at Marr's algorithmic level of analysis. Concretely, we present a normative, metacognitive model of how a cognitive system should over-represent extreme eventualities, depending on the amount of time available at its disposal for decision-making. Our model also accounts for two well-known framing effects in human decision-making under risk---the fourfold pattern of risk preferences in outcome probability (Tversky & Kahneman, 1992) and in outcome magnitude (Markovitz, 1952)---thereby providing the first metacognitively-rational basis for those effects. Empirical evidence, furthermore, confirms an important prediction of our model. Surprisingly, our model is unimaginably robust with respect to its focal parameter. We discuss the implications of our work for studies on human decision-making, and conclude by presenting a counterintuitive prediction of our model, which, if confirmed, would have intriguing implications for human decision-making under risk. To our knowledge, our model is the first metacognitive, resource-rational process model of cognitive biases in decision-making.
Converting Cascade-Correlation Neural Nets into Probabilistic Generative Models
Nobandegani, Ardavan Salehi, Shultz, Thomas R.
Humans are not only adept in recognizing what class an input instance belongs to (i.e., classification task), but perhaps more remarkably, they can imagine (i.e., generate) plausible instances of a desired class with ease, when prompted. Inspired by this, we propose a framework which allows transforming Cascade-Correlation Neural Networks (CCNNs) into probabilistic generative models, thereby enabling CCNNs to generate samples from a category of interest. CCNNs are a well-known class of deterministic, discriminative NNs, which autonomously construct their topology, and have been successful in giving accounts for a variety of psychological phenomena. Our proposed framework is based on a Markov Chain Monte Carlo (MCMC) method, called the Metropolis-adjusted Langevin algorithm, which capitalizes on the gradient information of the target distribution to direct its explorations towards regions of high probability, thereby achieving good mixing properties. Through extensive simulations, we demonstrate the efficacy of our proposed framework.
Managing Uncertainty in Rule Based Cognitive Models
Shultz, Thomas R.
An experiment replicated and extended recent findings on psychologically realistic ways of modeling propagation of uncertainty in rule based reasoning. Within a single production rule, the antecedent evidence can be summarized by taking the maximum of disjunctively connected antecedents and the minimum of conjunctively connected antecedents. The maximum certainty factor attached to each of the rule's conclusions can be sealed down by multiplication with this summarized antecedent certainty. Heckerman's modified certainty factor technique can be used to combine certainties for common conclusions across production rules.
Analysis of Unstandardized Contributions in Cross Connected Networks
Shultz, Thomas R., Oshima-Takane, Yuriko, Takane, Yoshio
Understanding knowledge representations in neural nets has been a difficult problem. Principal components analysis (PCA) of contributions (products of sending activations and connection weights) has yielded valuable insights into knowledge representations, but much of this work has focused on the correlation matrix of contributions. The present work shows that analyzing the variance-covariance matrix of contributions yields more valid insights by taking account of weights.
Analysis of Unstandardized Contributions in Cross Connected Networks
Shultz, Thomas R., Oshima-Takane, Yuriko, Takane, Yoshio
Understanding knowledge representations in neural nets has been a difficult problem. Principal components analysis (PCA) of contributions (products of sending activations and connection weights) has yielded valuable insights into knowledge representations, but much of this work has focused on the correlation matrix of contributions. The present work shows that analyzing the variance-covariance matrix of contributions yields more valid insights by taking account of weights.
Analysis of Unstandardized Contributions in Cross Connected Networks
Shultz, Thomas R., Oshima-Takane, Yuriko, Takane, Yoshio
Understanding knowledge representations in neural nets has been a difficult problem. Principal components analysis (PCA) of contributions (products of sending activations and connection weights) has yielded valuable insights into knowledge representations, but much of this work has focused on the correlation matrix of contributions. The present work shows that analyzing the variance-covariance matrix of contributions yields more valid insights by taking account of weights.
Analyzing Cross-Connected Networks
Shultz, Thomas R., Elman, Jeffrey L.
The nonlinear complexities of neural networks make network solutions difficult to understand. Sanger's contribution analysis is here extended to the analysis of networks automatically generated by the cascadecorrelation learning algorithm. Because such networks have cross connections that supersede hidden layers, standard analyses of hidden unit activation patterns are insufficient. A contribution is defined as the product of an output weight and the associated activation on the sending unit, whether that sending unit is an input or a hidden unit, multiplied by the sign of the output target for the current input pattern. Intercorrelations among contributions, as gleaned from the matrix of contributions x input patterns, can be subjected to principal components analysis (PCA) to extract the main features of variation in the contributions. Such an analysis is applied to three problems, continuous XOR, arithmetic comparison, and distinguishing between two interlocking spirals. In all three cases, this technique yields useful insights into network solutions that are consistent across several networks.
Analyzing Cross-Connected Networks
Shultz, Thomas R., Elman, Jeffrey L.
The nonlinear complexities of neural networks make network solutions difficult to understand. Sanger's contributionanalysis is here extended to the analysis of networks automatically generated by the cascadecorrelation learning algorithm. Because such networks have cross of hiddenconnections that supersede hidden layers, standard analyses contribution is defined as theunit activation patterns are insufficient. A of an output weight and the associated activation on the sendingproduct unit, whether that sending unit is an input or a hidden unit, multiplied by the sign of the output target for the current input pattern.