Goto

Collaborating Authors

 Shroff, Ness


Near-Optimal Adversarial Reinforcement Learning with Switching Costs

arXiv.org Artificial Intelligence

Switching costs, which capture the costs for changing policies, are regarded as a critical metric in reinforcement learning (RL), in addition to the standard metric of losses (or rewards). However, existing studies on switching costs (with a coefficient $\beta$ that is strictly positive and is independent of $T$) have mainly focused on static RL, where the loss distribution is assumed to be fixed during the learning process, and thus practical scenarios where the loss distribution could be non-stationary or even adversarial are not considered. While adversarial RL better models this type of practical scenarios, an open problem remains: how to develop a provably efficient algorithm for adversarial RL with switching costs? This paper makes the first effort towards solving this problem. First, we provide a regret lower-bound that shows that the regret of any algorithm must be larger than $\tilde{\Omega}( ( H S A )^{1/3} T^{2/3} )$, where $T$, $S$, $A$ and $H$ are the number of episodes, states, actions and layers in each episode, respectively. Our lower bound indicates that, due to the fundamental challenge of switching costs in adversarial RL, the best achieved regret (whose dependency on $T$ is $\tilde{O}(\sqrt{T})$) in static RL with switching costs (as well as adversarial RL without switching costs) is no longer achievable. Moreover, we propose two novel switching-reduced algorithms with regrets that match our lower bound when the transition function is known, and match our lower bound within a small factor of $\tilde{O}( H^{1/3} )$ when the transition function is unknown. Our regret analysis demonstrates the near-optimal performance of them.


Provably Efficient Model-Free Constrained RL with Linear Function Approximation

arXiv.org Artificial Intelligence

We study the constrained reinforcement learning problem, in which an agent aims to maximize the expected cumulative reward subject to a constraint on the expected total value of a utility function. In contrast to existing model-based approaches or model-free methods accompanied with a `simulator', we aim to develop the first model-free, simulator-free algorithm that achieves a sublinear regret and a sublinear constraint violation even in large-scale systems. To this end, we consider the episodic constrained Markov decision processes with linear function approximation, where the transition dynamics and the reward function can be represented as a linear function of some known feature mapping. We show that $\tilde{\mathcal{O}}(\sqrt{d^3H^3T})$ regret and $\tilde{\mathcal{O}}(\sqrt{d^3H^3T})$ constraint violation bounds can be achieved, where $d$ is the dimension of the feature mapping, $H$ is the length of the episode, and $T$ is the total number of steps. Our bounds are attained without explicitly estimating the unknown transition model or requiring a simulator, and they depend on the state space only through the dimension of the feature mapping. Hence our bounds hold even when the number of states goes to infinity. Our main results are achieved via novel adaptations of the standard LSVI-UCB algorithms. In particular, we first introduce primal-dual optimization into the LSVI-UCB algorithm to balance between regret and constraint violation. More importantly, we replace the standard greedy selection with respect to the state-action function in LSVI-UCB with a soft-max policy. This turns out to be key in establishing uniform concentration for the constrained case via its approximation-smoothness trade-off. We also show that one can achieve an even zero constraint violation while still maintaining the same order with respect to $T$.


Weighted Gaussian Process Bandits for Non-stationary Environments

arXiv.org Artificial Intelligence

In this paper, we consider the Gaussian process (GP) bandit optimization problem in a non-stationary environment. To capture external changes, the black-box function is allowed to be time-varying within a reproducing kernel Hilbert space (RKHS). To this end, we develop WGP-UCB, a novel UCB-type algorithm based on weighted Gaussian process regression. A key challenge is how to cope with infinite-dimensional feature maps. To that end, we leverage kernel approximation techniques to prove a sublinear regret bound, which is the first (frequentist) sublinear regret guarantee on weighted time-varying bandits with general nonlinear rewards. This result generalizes both non-stationary linear bandits and standard GP-UCB algorithms. Further, a novel concentration inequality is achieved for weighted Gaussian process regression with general weights. We also provide universal upper bounds and weight-dependent upper bounds for weighted maximum information gains. These results are potentially of independent interest for applications such as news ranking and adaptive pricing, where weights can be adopted to capture the importance or quality of data. Finally, we conduct experiments to highlight the favorable gains of the proposed algorithm in many cases when compared to existing methods.


Exploring $k$ out of Top $\rho$ Fraction of Arms in Stochastic Bandits

arXiv.org Machine Learning

This paper studies the problem of identifying any $k$ distinct arms among the top $\rho$ fraction (e.g., top 5\%) of arms from a finite or infinite set with a probably approximately correct (PAC) tolerance $\epsilon$. We consider two cases: (i) when the threshold of the top arms' expected rewards is known and (ii) when it is unknown. We prove lower bounds for the four variants (finite or infinite arms, and known or unknown threshold), and propose algorithms for each. Two of these algorithms are shown to be sample complexity optimal (up to constant factors) and the other two are optimal up to a log factor. Results in this paper provide up to $\rho n/k$ reductions compared with the "$k$-exploration" algorithms that focus on finding the (PAC) best $k$ arms out of $n$ arms. We also numerically show improvements over the state-of-the-art.


Contextual Bandits with Side-Observations

arXiv.org Machine Learning

We investigate contextual bandits in the presence of side-observations across arms in order to design recommendation algorithms for users connected via social networks. Users in social networks respond to their friends' activity, and hence provide information about each other's preferences. In our model, when a learning algorithm recommends an article to a user, not only does it observe his/her response (e.g. an ad click), but also the side-observations, i.e., the response of his neighbors if they were presented with the same article. We model these observation dependencies by a graph $\mathcal{G}$ in which nodes correspond to users, and edges correspond to social links. We derive a problem/instance-dependent lower-bound on the regret of any consistent algorithm. We propose an optimization (linear programming) based data-driven learning algorithm that utilizes the structure of $\mathcal{G}$ in order to make recommendations to users and show that it is asymptotically optimal, in the sense that its regret matches the lower-bound as the number of rounds $T\to\infty$. We show that this asymptotically optimal regret is upper-bounded as $O\left(|\chi(\mathcal{G})|\log T\right)$, where $|\chi(\mathcal{G})|$ is the domination number of $\mathcal{G}$. In contrast, a naive application of the existing learning algorithms results in $O\left(N\log T\right)$ regret, where $N$ is the number of users.


Data Poisoning Attacks on Stochastic Bandits

arXiv.org Machine Learning

Stochastic multi-armed bandits form a class of online learning problems that have important applications in online recommendation systems, adaptive medical treatment, and many others. Even though potential attacks against these learning algorithms may hijack their behavior, causing catastrophic loss in real-world applications, little is known about adversarial attacks on bandit algorithms. In this paper, we propose a framework of offline attacks on bandit algorithms and study convex optimization based attacks on several popular bandit algorithms. We show that the attacker can force the bandit algorithm to pull a target arm with high probability by a slight manipulation of the rewards in the data. Then we study a form of online attacks on bandit algorithms and propose an adaptive attack strategy against any bandit algorithm without the knowledge of the bandit algorithm. Our adaptive attack strategy can hijack the behavior of the bandit algorithm to suffer a linear regret with only a logarithmic cost to the attacker. Our results demonstrate a significant security threat to stochastic bandits.


Analysis of Thompson Sampling for Graphical Bandits Without the Graphs

arXiv.org Artificial Intelligence

We study multi-armed bandit problems with graph feedback, in which the decision maker is allowed to observe the neighboring actions of the chosen action, in a setting where the graph may vary over time and is never fully revealed to the decision maker. We show that when the feedback graphs are undirected, the original Thompson Sampling achieves the optimal (within logarithmic factors) regret $\tilde{O}\left(\sqrt{\beta_0(G)T}\right)$ over time horizon $T$, where $\beta_0(G)$ is the average independence number of the latent graphs. To the best of our knowledge, this is the first result showing that the original Thompson Sampling is optimal for graphical bandits in the undirected setting. A slightly weaker regret bound of Thompson Sampling in the directed setting is also presented. To fill this gap, we propose a variant of Thompson Sampling, that attains the optimal regret in the directed setting within a logarithmic factor. Both algorithms can be implemented efficiently and do not require the knowledge of the feedback graphs at any time.


UCBoost: A Boosting Approach to Tame Complexity and Optimality for Stochastic Bandits

arXiv.org Artificial Intelligence

In this work, we address the open problem of finding low-complexity near-optimal multi-armed bandit algorithms for sequential decision making problems. Existing bandit algorithms are either sub-optimal and computationally simple (e.g., UCB1) or optimal and computationally complex (e.g., kl-UCB). We propose a boosting approach to Upper Confidence Bound based algorithms for stochastic bandits, that we call UCBoost. Specifically, we propose two types of UCBoost algorithms. We show that UCBoost($D$) enjoys $O(1)$ complexity for each arm per round as well as regret guarantee that is $1/e$-close to that of the kl-UCB algorithm. We propose an approximation-based UCBoost algorithm, UCBoost($\epsilon$), that enjoys a regret guarantee $\epsilon$-close to that of kl-UCB as well as $O(\log(1/\epsilon))$ complexity for each arm per round. Hence, our algorithms provide practitioners a practical way to trade optimality with computational complexity. Finally, we present numerical results which show that UCBoost($\epsilon$) can achieve the same regret performance as the standard kl-UCB while incurring only $1\%$ of the computational cost of kl-UCB.


Information Directed Sampling for Stochastic Bandits With Graph Feedback

AAAI Conferences

We consider stochastic multi-armed bandit problems with graph feedback, where the decision maker is allowed to observe the neighboring actions of the chosen action. We allow the graph structure to vary with time and consider both deterministic and Erdos-Renyi random graph models. For such a graph feedback model, we first present a novel analysis of Thompson sampling that leads to tighter performance bound than existing work. Next, we propose new Information Directed Sampling based policies that are graph-aware in their decision making. Under the deterministic graph case, we establish a Bayesian regret bound for the proposed policies that scales with the clique cover number of the graph instead of the number of actions. Under the random graph case, we provide a Bayesian regret bound for the proposed policies that scales with the ratio of the number of actions over the expected number of observations per iteration. To the best of our knowledge, this is the first analytical result for stochastic bandits with random graph feedback. Finally, using numerical evaluations, we demonstrate that our proposed IDS policies outperform existing approaches, including adaptions of upper confidence bound, epsilon-greedy and Exp3 algorithms.


A New Alternating Direction Method for Linear Programming

Neural Information Processing Systems

It is well known that, for a linear program (LP) with constraint matrix $\mathbf{A}\in\mathbb{R}^{m\times n}$, the Alternating Direction Method of Multiplier converges globally and linearly at a rate $O((\|\mathbf{A}\|_F^2+mn)\log(1/\epsilon))$. However, such a rate is related to the problem dimension and the algorithm exhibits a slow and fluctuating ``tail convergence'' in practice. In this paper, we propose a new variable splitting method of LP and prove that our method has a convergence rate of $O(\|\mathbf{A}\|^2\log(1/\epsilon))$. The proof is based on simultaneously estimating the distance from a pair of primal dual iterates to the optimal primal and dual solution set by certain residuals. In practice, we result in a new first-order LP solver that can exploit both the sparsity and the specific structure of matrix $\mathbf{A}$ and a significant speedup for important problems such as basis pursuit, inverse covariance matrix estimation, L1 SVM and nonnegative matrix factorization problem compared with current fastest LP solvers.