Shin, Jinwoo
Efficient Long Video Tokenization via Coordinate-based Patch Reconstruction
Jang, Huiwon, Yu, Sihyun, Shin, Jinwoo, Abbeel, Pieter, Seo, Younggyo
Efficient tokenization of videos remains a challenge in training vision models that can process long videos. One promising direction is to develop a tokenizer that can encode long video clips, as it would enable the tokenizer to leverage the temporal coherence of videos better for tokenization. However, training existing tokenizers on long videos often incurs a huge training cost as they are trained to reconstruct all the frames at once. In this paper, we introduce CoordTok, a video tokenizer that learns a mapping from coordinate-based representations to the corresponding patches of input videos, inspired by recent advances in 3D generative models. In particular, CoordTok encodes a video into factorized triplane representations and reconstructs patches that correspond to randomly sampled $(x,y,t)$ coordinates. This allows for training large tokenizer models directly on long videos without requiring excessive training resources. Our experiments show that CoordTok can drastically reduce the number of tokens for encoding long video clips. For instance, CoordTok can encode a 128-frame video with 128$\times$128 resolution into 1280 tokens, while baselines need 6144 or 8192 tokens to achieve similar reconstruction quality. We further show that this efficient video tokenization enables memory-efficient training of a diffusion transformer that can generate 128 frames at once.
Confidence-aware Denoised Fine-tuning of Off-the-shelf Models for Certified Robustness
Jang, Suhyeok, Kim, Seojin, Shin, Jinwoo, Jeong, Jongheon
The remarkable advances in deep learning have led to the emergence of many off-the-shelf classifiers, e.g., large pre-trained models. However, since they are typically trained on clean data, they remain vulnerable to adversarial attacks. Despite this vulnerability, their superior performance and transferability make off-the-shelf classifiers still valuable in practice, demanding further work to provide adversarial robustness for them in a post-hoc manner. A recently proposed method, denoised smoothing, leverages a denoiser model in front of the classifier to obtain provable robustness without additional training. However, the denoiser often creates hallucination, i.e., images that have lost the semantics of their originally assigned class, leading to a drop in robustness. Furthermore, its noise-and-denoise procedure introduces a significant distribution shift from the original distribution, causing the denoised smoothing framework to achieve sub-optimal robustness. In this paper, we introduce Fine-Tuning with Confidence-Aware Denoised Image Selection (FT-CADIS), a novel fine-tuning scheme to enhance the certified robustness of off-the-shelf classifiers. FT-CADIS is inspired by the observation that the confidence of off-the-shelf classifiers can effectively identify hallucinated images during denoised smoothing. Based on this, we develop a confidence-aware training objective to handle such hallucinated images and improve the stability of fine-tuning from denoised images. In this way, the classifier can be fine-tuned using only images that are beneficial for adversarial robustness. We also find that such a fine-tuning can be done by updating a small fraction of parameters of the classifier. Extensive experiments demonstrate that FT-CADIS has established the state-of-the-art certified robustness among denoised smoothing methods across all $\ell_2$-adversary radius in various benchmarks.
Conditional Synthesis of 3D Molecules with Time Correction Sampler
Jung, Hojung, Park, Youngrok, Schmid, Laura, Jo, Jaehyeong, Lee, Dongkyu, Kim, Bongsang, Yun, Se-Young, Shin, Jinwoo
Diffusion models have demonstrated remarkable success in various domains, including molecular generation. However, conditional molecular generation remains a fundamental challenge due to an intrinsic trade-off between targeting specific chemical properties and generating meaningful samples from the data distribution. In this work, we present Time-Aware Conditional Synthesis (TACS), a novel approach to conditional generation on diffusion models. It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties while maintaining validity and stability. A key component of our algorithm is our new type of diffusion sampler, Time Correction Sampler (TCS), which is used to control guidance and ensure that the generated molecules remain on the correct manifold at each reverse step of the diffusion process at the same time. Our proposed method demonstrates significant performance in conditional 3D molecular generation and offers a promising approach towards inverse molecular design, potentially facilitating advancements in drug discovery, materials science, and other related fields.
Margin Matching Preference Optimization: Enhanced Model Alignment with Granular Feedback
Kim, Kyuyoung, Seo, Ah Jeong, Liu, Hao, Shin, Jinwoo, Lee, Kimin
Large language models (LLMs) fine-tuned with alignment techniques, such as reinforcement learning from human feedback, have been instrumental in developing some of the most capable AI systems to date. Despite their success, existing methods typically rely on simple binary labels, such as those indicating preferred outputs in pairwise preferences, which fail to capture the subtle differences in relative quality between pairs. To address this limitation, we introduce an approach called Margin Matching Preference Optimization (MMPO), which incorporates relative quality margins into optimization, leading to improved LLM policies and reward models. Specifically, given quality margins in pairwise preferences, we design soft target probabilities based on the Bradley-Terry model, which are then used to train models with the standard cross-entropy objective. Experiments with both human and AI feedback data demonstrate that MMPO consistently outperforms baseline methods, often by a substantial margin, on popular benchmarks including MT-bench and RewardBench. Notably, the 7B model trained with MMPO achieves state-of-the-art performance on RewardBench as of June 2024, outperforming other models of the same scale. Our analysis also shows that MMPO is more robust to overfitting, leading to better-calibrated models.
Data-Efficient Molecular Generation with Hierarchical Textual Inversion
Kim, Seojin, Nam, Jaehyun, Yu, Sihyun, Shin, Younghoon, Shin, Jinwoo
Developing an effective molecular generation framework even with a limited number of molecules is often important for its practical deployment, e.g., drug discovery, since acquiring task-related molecular data requires expensive and time-consuming experimental costs. To tackle this issue, we introduce Hierarchical textual Inversion for Molecular generation (HI-Mol), a novel data-efficient molecular generation method. HI-Mol is inspired by the importance of hierarchical information, e.g., both coarse- and fine-grained features, in understanding the molecule distribution. We propose to use multi-level embeddings to reflect such hierarchical features based on the adoption of the recent textual inversion technique in the visual domain, which achieves data-efficient image generation. Compared to the conventional textual inversion method in the image domain using a single-level token embedding, our multi-level token embeddings allow the model to effectively learn the underlying low-shot molecule distribution. We then generate molecules based on the interpolation of the multi-level token embeddings. Extensive experiments demonstrate the superiority of HI-Mol with notable data-efficiency. For instance, on QM9, HI-Mol outperforms the prior state-of-the-art method with 50x less training data. We also show the effectiveness of molecules generated by HI-Mol in low-shot molecular property prediction.
Optimized Feature Generation for Tabular Data via LLMs with Decision Tree Reasoning
Nam, Jaehyun, Kim, Kyuyoung, Oh, Seunghyuk, Tack, Jihoon, Kim, Jaehyung, Shin, Jinwoo
Learning effective representations from raw data is crucial for the success of deep learning methods. However, in the tabular domain, practitioners often prefer augmenting raw column features over using learned representations, as conventional tree-based algorithms frequently outperform competing approaches. As a result, feature engineering methods that automatically generate candidate features have been widely used. While these approaches are often effective, there remains ambiguity in defining the space over which to search for candidate features. Moreover, they often rely solely on validation scores to select good features, neglecting valuable feedback from past experiments that could inform the planning of future experiments. To address the shortcomings, we propose a new tabular learning framework based on large language models (LLMs), coined Optimizing Column feature generator with decision Tree reasoning (OCTree). Our key idea is to leverage LLMs' reasoning capabilities to find good feature generation rules without manually specifying the search space and provide language-based reasoning information highlighting past experiments as feedback for iterative rule improvements. Here, we choose a decision tree as reasoning as it can be interpreted in natural language, effectively conveying knowledge of past experiments (i.e., the prediction models trained with the generated features) to the LLM. Our empirical results demonstrate that this simple framework consistently enhances the performance of various prediction models across diverse tabular benchmarks, outperforming competing automatic feature engineering methods.
Visual Representation Learning with Stochastic Frame Prediction
Jang, Huiwon, Kim, Dongyoung, Kim, Junsu, Shin, Jinwoo, Abbeel, Pieter, Seo, Younggyo
Self-supervised learning of image representations by predicting future frames is a promising direction but still remains a challenge. This is because of the under-determined nature of frame prediction; multiple potential futures can arise from a single current frame. To tackle this challenge, in this paper, we revisit the idea of stochastic video generation that learns to capture uncertainty in frame prediction and explore its effectiveness for representation learning. Specifically, we design a framework that trains a stochastic frame prediction model to learn temporal information between frames. Moreover, to learn dense information within each frame, we introduce an auxiliary masked image modeling objective along with a shared decoder architecture. We find this architecture allows for combining both objectives in a synergistic and compute-efficient manner. We demonstrate the effectiveness of our framework on a variety of tasks from video label propagation and vision-based robot learning domains, such as video segmentation, pose tracking, vision-based robotic locomotion, and manipulation tasks. Code is available on the project webpage: https://sites.google.com/view/2024rsp.
Aligning Large Language Models with Self-generated Preference Data
Kim, Dongyoung, Lee, Kimin, Shin, Jinwoo, Kim, Jaehyung
Aligning large language models (LLMs) with human preferences becomes a key component to obtaining state-of-the-art performance, but it yields a huge cost to construct a large human-annotated preference dataset. To tackle this problem, we propose a new framework that boosts the alignment of LLMs through Self-generated Preference data (Selfie) using only a very small amount of human-annotated preference data. Our key idea is leveraging the human prior knowledge within the small (seed) data and progressively improving the alignment of LLM, by iteratively generating the responses and learning from them with the self-annotated preference data. To be specific, we propose to derive the preference label from the logits of LLM to explicitly extract the model's inherent preference. Compared to the previous approaches using external reward models or implicit in-context learning, we observe that the proposed approach is significantly more effective. In addition, we introduce a noise-aware preference learning algorithm to mitigate the risk of low quality within generated preference data. Our experimental results demonstrate that the proposed framework significantly boosts the alignment of LLMs. For example, we achieve superior alignment performance on AlpacaEval 2.0 with only 3.3\% of the ground-truth preference labels in the Ultrafeedback data compared to the cases using the entire data or state-of-the-art baselines.
ReMoDetect: Reward Models Recognize Aligned LLM's Generations
Lee, Hyunseok, Tack, Jihoon, Shin, Jinwoo
The remarkable capabilities and easy accessibility of large language models (LLMs) have significantly increased societal risks (e.g., fake news generation), necessitating the development of LLM-generated text (LGT) detection methods for safe usage. However, detecting LGTs is challenging due to the vast number of LLMs, making it impractical to account for each LLM individually; hence, it is crucial to identify the common characteristics shared by these models. In this paper, we draw attention to a common feature of recent powerful LLMs, namely the alignment training, i.e., training LLMs to generate human-preferable texts. Our key finding is that as these aligned LLMs are trained to maximize the human preferences, they generate texts with higher estimated preferences even than human-written texts; thus, such texts are easily detected by using the reward model (i.e., an LLM trained to model human preference distribution). Based on this finding, we propose two training schemes to further improve the detection ability of the reward model, namely (i) continual preference fine-tuning to make the reward model prefer aligned LGTs even further and (ii) reward modeling of Human/LLM mixed texts (a rephrased texts from human-written texts using aligned LLMs), which serves as a median preference text corpus between LGTs and human-written texts to learn the decision boundary better. We provide an extensive evaluation by considering six text domains across twelve aligned LLMs, where our method demonstrates state-of-the-art results.
Real-World Efficient Blind Motion Deblurring via Blur Pixel Discretization
Kim, Insoo, Choi, Jae Seok, Seo, Geonseok, Kwon, Kinam, Shin, Jinwoo, Lee, Hyong-Euk
As recent advances in mobile camera technology have enabled the capability to capture high-resolution images, such as 4K images, the demand for an efficient deblurring model handling large motion has increased. In this paper, we discover that the image residual errors, i.e., blur-sharp pixel differences, can be grouped into some categories according to their motion blur type and how complex their neighboring pixels are. Inspired by this, we decompose the deblurring (regression) task into blur pixel discretization (pixel-level blur classification) and discrete-to-continuous conversion (regression with blur class map) tasks. Specifically, we generate the discretized image residual errors by identifying the blur pixels and then transform them to a continuous form, which is computationally more efficient than naively solving the original regression problem with continuous values. Here, we found that the discretization result, i.e., blur segmentation map, remarkably exhibits visual similarity with the image residual errors. As a result, our efficient model shows comparable performance to state-of-the-art methods in realistic benchmarks, while our method is up to 10 times computationally more efficient.