Sheldon, Daniel
Faster Kernel Interpolation for Gaussian Processes
Yadav, Mohit, Sheldon, Daniel, Musco, Cameron
A key challenge in scaling Gaussian Process (GP) regression to massive datasets is that exact inference requires computation with a dense n x n kernel matrix, where n is the number of data points. Significant work focuses on approximating the kernel matrix via interpolation using a smaller set of m inducing points. Structured kernel interpolation (SKI) is among the most scalable methods: by placing inducing points on a dense grid and using structured matrix algebra, SKI achieves per-iteration time of O(n + m log m) for approximate inference. This linear scaling in n enables inference for very large data sets; however the cost is per-iteration, which remains a limitation for extremely large n. We show that the SKI per-iteration time can be reduced to O(m log m) after a single O(n) time precomputation step by reframing SKI as solving a natural Bayesian linear regression problem with a fixed set of m compact basis functions. With per-iteration complexity independent of the dataset size n for a fixed grid, our method scales to truly massive data sets. We demonstrate speedups in practice for a wide range of m and n and apply the method to GP inference on a three-dimensional weather radar dataset with over 100 million points.
Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and Optimization
Agrawal, Abhinav, Sheldon, Daniel, Domke, Justin
Recent research has seen several advances relevant to black-box VI, but the current state of automatic posterior inference is unclear. One such advance is the use of normalizing flows to define flexible posterior densities for deep latent variable models. Another direction is the integration of Monte-Carlo methods to serve two purposes; first, to obtain tighter variational objectives for optimization, and second, to define enriched variational families through sampling. However, both flows and variational Monte-Carlo methods remain relatively unexplored for black-box VI. Moreover, on a pragmatic front, there are several optimization considerations like step-size scheme, parameter initialization, and choice of gradient estimators, for which there are no clear guidance in the existing literature. In this paper, we postulate that black-box VI is best addressed through a careful combination of numerous algorithmic components. We evaluate components relating to optimization, flows, and Monte-Carlo methods on a benchmark of 30 models from the Stan model library. The combination of these algorithmic components significantly advances the state-of-the-art "out of the box" variational inference.
Normalizing Flows Across Dimensions
Cunningham, Edmond, Zabounidis, Renos, Agrawal, Abhinav, Fiterau, Ina, Sheldon, Daniel
Real-world data with underlying structure, such as pictures of faces, are hypothesized to lie on a low-dimensional manifold. This manifold hypothesis has motivated state-of-the-art generative algorithms that learn low-dimensional data representations. Unfortunately, a popular generative model, normalizing flows, cannot take advantage of this. Normalizing flows are based on successive variable transformations that are, by design, incapable of learning lower-dimensional representations. In this paper we introduce noisy injective flows (NIF), a generalization of normalizing flows that can go across dimensions. NIF explicitly map the latent space to a learnable manifold in a high-dimensional data space using injective transformations. We further employ an additive noise model to account for deviations from the manifold and identify a stochastic inverse of the generative process. Empirically, we demonstrate that a simple application of our method to existing flow architectures can significantly improve sample quality and yield separable data embeddings.
General-Purpose Differentially-Private Confidence Intervals
Ferrando, Cecilia, Wang, Shufan, Sheldon, Daniel
One of the most common statistical goals is to estimate a population parameter and quantify uncertainty by constructing a confidence interval. However, the field of differential privacy lacks easy-to-use and general methods for doing so. We partially fill this gap by developing two broadly applicable methods for private confidence-interval construction. The first is based on asymptotics: for two widely used model classes, exponential families and linear regression, a simple private estimator has the same asymptotic normal distribution as the corresponding non-private estimator, so confidence intervals can be constructed using quantiles of the normal distribution. These are computationally cheap and accurate for large data sets, but do not have good coverage for small data sets. The second approach is based on the parametric bootstrap. It applies "out of the box" to a wide class of private estimators and has good coverage at small sample sizes, but with increased computational cost. Both methods are based on post-processing the private estimator and do not consume additional privacy budget.
Differentially Private Bayesian Linear Regression
Bernstein, Garrett, Sheldon, Daniel
Linear regression is an important tool across many fields that work with sensitive human-sourced data. Significant prior work has focused on producing differentially private point estimates, which provide a privacy guarantee to individuals while still allowing modelers to draw insights from data by estimating regression coefficients. We investigate the problem of Bayesian linear regression, with the goal of computing posterior distributions that correctly quantify uncertainty given privately released statistics. We show that a naive approach that ignores the noise injected by the privacy mechanism does a poor job in realistic data settings. We then develop noise-aware methods that perform inference over the privacy mechanism and produce correct posteriors across a wide range of scenarios.
Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation
Domke, Justin, Sheldon, Daniel
Recent work in variational inference (VI) uses ideas from Monte Carlo estimation to tighten the lower bounds on the log-likelihood that are used as objectives. However, there is no systematic understanding of how optimizing different objectives relates to approximating the posterior distribution. Developing such a connection is important if the ideas are to be applied to inference--i.e., applications that require an approximate posterior and not just an approximation of the log-likelihood. Given a VI objective defined by a Monte Carlo estimator of the likelihood, we use a "divide and couple" procedure to identify augmented proposal and target distributions. The divergence between these is equal to the gap between the VI objective and the log-likelihood. Thus, after maximizing the VI objective, the augmented variational distribution may be used to approximate the posterior distribution.
A Bayesian Perspective on the Deep Image Prior
Cheng, Zezhou, Gadelha, Matheus, Maji, Subhransu, Sheldon, Daniel
The deep image prior was recently introduced as a prior for natural images. It represents images as the output of a convolutional network with random inputs. For "inference", gradient descent is performed to adjust network parameters to make the output match observations. This approach yields good performance on a range of image reconstruction tasks. We show that the deep image prior is asymptotically equivalent to a stationary Gaussian process prior in the limit as the number of channels in each layer of the network goes to infinity, and derive the corresponding kernel. This informs a Bayesian approach to inference. We show that by conducting posterior inference using stochastic gradient Langevin we avoid the need for early stopping, which is a drawback of the current approach, and improve results for denoising and impainting tasks. We illustrate these intuitions on a number of 1D and 2D signal reconstruction tasks.
Graphical-model based estimation and inference for differential privacy
McKenna, Ryan, Sheldon, Daniel, Miklau, Gerome
Many privacy mechanisms reveal high-level information about a data distribution through noisy measurements. It is common to use this information to estimate the answers to new queries. In this work, we provide an approach to solve this estimation problem efficiently using graphical models, which is particularly effective when the distribution is high-dimensional but the measurements are over low-dimensional marginals. We show that our approach is far more efficient than existing estimation techniques from the privacy literature and that it can improve the accuracy and scalability of many state-of-the-art mechanisms.
Differentially Private Bayesian Inference for Exponential Families
Bernstein, Garrett, Sheldon, Daniel
The study of private inference has been sparked by growing concern regarding the analysis of data when it stems from sensitive sources. We present the first method for private Bayesian inference in exponential families that properly accounts for noise introduced by the privacy mechanism. It is efficient because it works only with sufficient statistics and not individual data. Unlike other methods, it gives properly calibrated posterior beliefs in the non-asymptotic data regime.
Importance Weighting and Variational Inference
Domke, Justin, Sheldon, Daniel
Recent work used importance sampling ideas for better variational bounds on likelihoods. We clarify the applicability of these ideas to pure probabilistic inference, by showing the resulting Importance Weighted Variational Inference (IWVI) technique is an instance of augmented variational inference, thus identifying the looseness in previous work. Experiments confirm IWVI's practicality for probabilistic inference. As a second contribution, we investigate inference with elliptical distributions, which improves accuracy in low dimensions, and convergence in high dimensions.