Not enough data to create a plot.
Try a different view from the menu above.
Sharma, Pratyusha
Skill Induction and Planning with Latent Language
Sharma, Pratyusha, Torralba, Antonio, Andreas, Jacob
We present a framework for learning hierarchical policies from demonstrations, using sparse natural language annotations to guide the discovery of reusable skills for autonomous decision-making. We formulate a generative model of action sequences in which goals generate sequences of high-level subtask descriptions, and these descriptions generate sequences of low-level actions. We describe how to train this model using primarily unannotated demonstrations by parsing demonstrations into sequences of named high-level subtasks, using only a small number of seed annotations to ground language in action. In trained models, the space of natural language commands indexes a combinatorial library of skills; agents can use these skills to plan by generating high-level instruction sequences tailored to novel goals. We evaluate this approach in the ALFRED household simulation environment, providing natural language annotations for only 10% of demonstrations. It completes more than twice as many tasks as a standard approach to learning from demonstrations, matching the performance of instruction following models with access to ground-truth plans during both training and evaluation.
Cetacean Translation Initiative: a roadmap to deciphering the communication of sperm whales
Andreas, Jacob, Beguš, Gašper, Bronstein, Michael M., Diamant, Roee, Delaney, Denley, Gero, Shane, Goldwasser, Shafi, Gruber, David F., de Haas, Sarah, Malkin, Peter, Payne, Roger, Petri, Giovanni, Rus, Daniela, Sharma, Pratyusha, Tchernov, Dan, Tønnesen, Pernille, Torralba, Antonio, Vogt, Daniel, Wood, Robert J.
The past decade has witnessed a groundbreaking rise of machine learning for human language analysis, with current methods capable of automatically accurately recovering various aspects of syntax and semantics - including sentence structure and grounded word meaning - from large data collections. Recent research showed the promise of such tools for analyzing acoustic communication in nonhuman species. We posit that machine learning will be the cornerstone of future collection, processing, and analysis of multimodal streams of data in animal communication studies, including bioacoustic, behavioral, biological, and environmental data. Cetaceans are unique non-human model species as they possess sophisticated acoustic communications, but utilize a very different encoding system that evolved in an aquatic rather than terrestrial medium. Sperm whales, in particular, with their highly-developed neuroanatomical features, cognitive abilities, social structures, and discrete click-based encoding make for an excellent starting point for advanced machine learning tools that can be applied to other animals in the future. This paper details a roadmap toward this goal based on currently existing technology and multidisciplinary scientific community effort. We outline the key elements required for the collection and processing of massive bioacoustic data of sperm whales, detecting their basic communication units and language-like higher-level structures, and validating these models through interactive playback experiments. The technological capabilities developed by such an undertaking are likely to yield cross-applications and advancements in broader communities investigating non-human communication and animal behavioral research.