Plotting

 Sharma, Lakshay


Look Before You Leap: Socially Acceptable High-Speed Ground Robot Navigation in Crowded Hallways

arXiv.org Artificial Intelligence

To operate safely and efficiently, autonomous warehouse/delivery robots must be able to accomplish tasks while navigating in dynamic environments and handling the large uncertainties associated with the motions/behaviors of other robots and/or humans. A key scenario in such environments is the hallway problem, where robots must operate in the same narrow corridor as human traffic going in one or both directions. Traditionally, robot planners have tended to focus on socially acceptable behavior in the hallway scenario at the expense of performance. This paper proposes a planner that aims to address the consequent "robot freezing problem" in hallways by allowing for "peek-and-pass" maneuvers. We then go on to demonstrate in simulation how this planner improves robot time to goal without violating social norms. Finally, we show initial hardware demonstrations of this planner in the real world.


EVORA: Deep Evidential Traversability Learning for Risk-Aware Off-Road Autonomy

arXiv.org Artificial Intelligence

Traversing terrain with good traction is crucial for achieving fast off-road navigation. Instead of manually designing costs based on terrain features, existing methods learn terrain properties directly from data via self-supervision, but challenges remain to properly quantify and mitigate risks due to uncertainties in learned models. This work efficiently quantifies both aleatoric and epistemic uncertainties by learning discrete traction distributions and probability densities of the traction predictor's latent features. Leveraging evidential deep learning, we parameterize Dirichlet distributions with the network outputs and propose a novel uncertainty-aware squared Earth Mover's distance loss with a closed-form expression that improves learning accuracy and navigation performance. The proposed risk-aware planner simulates state trajectories with the worst-case expected traction to handle aleatoric uncertainty, and penalizes trajectories moving through terrain with high epistemic uncertainty. Our approach is extensively validated in simulation and on wheeled and quadruped robots, showing improved navigation performance compared to methods that assume no slip, assume the expected traction, or optimize for the worst-case expected cost.


Probabilistic Traversability Model for Risk-Aware Motion Planning in Off-Road Environments

arXiv.org Artificial Intelligence

A key challenge in off-road navigation is that even visually similar terrains or ones from the same semantic class may have substantially different traction properties. Existing work typically assumes no wheel slip or uses the expected traction for motion planning, where the predicted trajectories provide a poor indication of the actual performance if the terrain traction has high uncertainty. In contrast, this work proposes to analyze terrain traversability with the empirical distribution of traction parameters in unicycle dynamics, which can be learned by a neural network in a self-supervised fashion. The probabilistic traction model leads to two risk-aware cost formulations that account for the worst-case expected cost and traction. To help the learned model generalize to unseen environment, terrains with features that lead to unreliable predictions are detected via a density estimator fit to the trained network's latent space and avoided via auxiliary penalties during planning. Simulation results demonstrate that the proposed approach outperforms existing work that assumes no slip or uses the expected traction in both navigation success rate and completion time. Furthermore, avoiding terrains with low density-based confidence score achieves up to 30% improvement in success rate when the learned traction model is used in a novel environment.


RAMP: A Risk-Aware Mapping and Planning Pipeline for Fast Off-Road Ground Robot Navigation

arXiv.org Artificial Intelligence

A key challenge in fast ground robot navigation in 3D terrain is balancing robot speed and safety. Recent work has shown that 2.5D maps (2D representations with additional 3D information) are ideal for real-time safe and fast planning. However, the prevalent approach of generating 2D occupancy grids through raytracing makes the generated map unsafe to plan in, due to inaccurate representation of unknown space. Additionally, existing planners such as MPPI do not consider speeds in known free and unknown space separately, leading to slower overall plans. The RAMP pipeline proposed here solves these issues using new mapping and planning methods. This work first presents ground point inflation with persistent spatial memory as a way to generate accurate occupancy grid maps from classified pointclouds. Then we present an MPPI-based planner with embedded variability in horizon, to maximize speed in known free space while retaining cautionary penetration into unknown space. Finally, we integrate this mapping and planning pipeline with risk constraints arising from 3D terrain, and verify that it enables fast and safe navigation using simulations and hardware demonstrations.


Sentiment Classification using Images and Label Embeddings

arXiv.org Machine Learning

In this project we analysed how much semantic information images carry, and how much value image data can add to sentiment analysis of the text associated with the images. To better understand the contribution from images, we compared models which only made use of image data, models which only made use of text data, and models which combined both data types. We also analysed if this approach could help sentiment classifiers generalize to unknown sentiments.