Sharma, Amit
Machine Explanations and Human Understanding
Chen, Chacha, Feng, Shi, Sharma, Amit, Tan, Chenhao
Explanations are hypothesized to improve human understanding of machine learning models and achieve a variety of desirable outcomes, ranging from model debugging to enhancing human decision making. However, empirical studies have found mixed and even negative results. An open question, therefore, is under what conditions explanations can improve human understanding and in what way. Using adapted causal diagrams, we provide a formal characterization of the interplay between machine explanations and human understanding, and show how human intuitions play a central role in enabling human understanding. Specifically, we identify three core concepts of interest that cover all existing quantitative measures of understanding in the context of human-AI decision making: task decision boundary, model decision boundary, and model error. Our key result is that without assumptions about task-specific intuitions, explanations may potentially improve human understanding of model decision boundary, but they cannot improve human understanding of task decision boundary or model error. To achieve complementary human-AI performance, we articulate possible ways on how explanations need to work with human intuitions. For instance, human intuitions about the relevance of features (e.g., education is more important than age in predicting a person's income) can be critical in detecting model error. We validate the importance of human intuitions in shaping the outcome of machine explanations with empirical human-subject studies. Overall, our work provides a general framework along with actionable implications for future algorithmic development and empirical experiments of machine explanations.
Deep End-to-end Causal Inference
Geffner, Tomas, Antoran, Javier, Foster, Adam, Gong, Wenbo, Ma, Chao, Kiciman, Emre, Sharma, Amit, Lamb, Angus, Kukla, Martin, Pawlowski, Nick, Allamanis, Miltiadis, Zhang, Cheng
Causal inference is essential for data-driven decision making across domains such as business engagement, medical treatment or policy making. However, research on causal discovery and inference has evolved separately, and the combination of the two domains is not trivial. In this work, we develop Deep End-to-end Causal Inference (DECI), a single flow-based method that takes in observational data and can perform both causal discovery and inference, including conditional average treatment effect (CATE) estimation. We provide a theoretical guarantee that DECI can recover the ground truth causal graph under mild assumptions. In addition, our method can handle heterogeneous, real-world, mixed-type data with missing values, allowing for both continuous and discrete treatment decisions. Moreover, the design principle of our method can generalize beyond DECI, providing a general End-to-end Causal Inference (ECI) recipe, which enables different ECI frameworks to be built using existing methods. Our results show the superior performance of DECI when compared to relevant baselines for both causal discovery and (C)ATE estimation in over a thousand experiments on both synthetic datasets and other causal machine learning benchmark datasets.
Omitted Variable Bias in Machine Learned Causal Models
Chernozhukov, Victor, Cinelli, Carlos, Newey, Whitney, Sharma, Amit, Syrgkanis, Vasilis
We derive general, yet simple, sharp bounds on the size of the omitted variable bias for a broad class of causal parameters that can be identified as linear functionals of the conditional expectation function of the outcome. Such functionals encompass many of the traditional targets of investigation in causal inference studies, such as, for example, (weighted) average of potential outcomes, average treatment effects (including subgroup effects, such as the effect on the treated), (weighted) average derivatives, and policy effects from shifts in covariate distribution -- all for general, nonparametric causal models. Our construction relies on the Riesz-Frechet representation of the target functional. Specifically, we show how the bound on the bias depends only on the additional variation that the latent variables create both in the outcome and in the Riesz representer for the parameter of interest. Moreover, in many important cases (e.g, average treatment effects in partially linear models, or in nonseparable models with a binary treatment) the bound is shown to depend on two easily interpretable quantities: the nonparametric partial $R^2$ (Pearson's "correlation ratio") of the unobserved variables with the treatment and with the outcome. Therefore, simple plausibility judgments on the maximum explanatory power of omitted variables (in explaining treatment and outcome variation) are sufficient to place overall bounds on the size of the bias. Finally, leveraging debiased machine learning, we provide flexible and efficient statistical inference methods to estimate the components of the bounds that are identifiable from the observed distribution.
Causal Regularization Using Domain Priors
Reddy, Abbavaram Gowtham, Kancheti, Sai Srinivas, Balasubramanian, Vineeth N, Sharma, Amit
Neural networks leverage both causal and correlation-based relationships in data to learn models that optimize a given performance criterion, such as classification accuracy. This results in learned models that may not necessarily reflect the true causal relationships between input and output. When domain priors of causal relationships are available at the time of training, it is essential that a neural network model maintains these relationships as causal, even as it learns to optimize the performance criterion. We propose a causal regularization method that can incorporate such causal domain priors into the network and which supports both direct and total causal effects. We show that this approach can generalize to various kinds of specifications of causal priors, including monotonicity of causal effect of a given input feature or removing a certain influence for purposes of fairness. Our experiments on eleven benchmark datasets show the usefulness of this approach in regularizing a learned neural network model to maintain desired causal effects. On most datasets, domain-prior consistent models can be obtained without compromising on accuracy.
The Connection between Out-of-Distribution Generalization and Privacy of ML Models
Mahajan, Divyat, Tople, Shruti, Sharma, Amit
With the goal of generalizing to out-of-distribution (OOD) data, recent domain generalization methods aim to learn "stable" feature representations whose effect on the output remains invariant across domains. Given the theoretical connection between generalization and privacy, we ask whether better OOD generalization leads to better privacy for machine learning models, where privacy is measured through robustness to membership inference (MI) attacks. In general, we find that the relationship does not hold. Through extensive evaluation on a synthetic dataset and image datasets like MNIST, Fashion-MNIST, and Chest X-rays, we show that a lower OOD generalization gap does not imply better robustness to MI attacks. Instead, privacy benefits are based on the extent to which a model captures the stable features. A model that captures stable features is more robust to MI attacks than models that exhibit better OOD generalization but do not learn stable features. Further, for the same provable differential privacy guarantees, a model that learns stable features provides higher utility as compared to others. Our results offer the first extensive empirical study connecting stable features and privacy, and also have a takeaway for the domain generalization community; MI attack can be used as a complementary metric to measure model quality.
DoWhy: Addressing Challenges in Expressing and Validating Causal Assumptions
Sharma, Amit, Syrgkanis, Vasilis, Zhang, Cheng, Kฤฑcฤฑman, Emre
Estimation of causal effects involves crucial assumptions about the data-generating process, such as directionality of effect, presence of instrumental variables or mediators, and whether all relevant confounders are observed. Violation of any of these assumptions leads to significant error in the effect estimate. However, unlike cross-validation for predictive models, there is no global validator method for a causal estimate. As a result, expressing different causal assumptions formally and validating them (to the extent possible) becomes critical for any analysis. We present DoWhy, a framework that allows explicit declaration of assumptions through a causal graph and provides multiple validation tests to check a subset of these assumptions. Our experience with DoWhy highlights a number of open questions for future research: developing new ways beyond causal graphs to express assumptions, the role of causal discovery in learning relevant parts of the graph, and developing validation tests that can better detect errors, both for average and conditional treatment effects. DoWhy is available at https://github.com/microsoft/dowhy.
Technology Readiness Levels for Machine Learning Systems
Lavin, Alexander, Gilligan-Lee, Ciarรกn M., Visnjic, Alessya, Ganju, Siddha, Newman, Dava, Ganguly, Sujoy, Lange, Danny, Baydin, Atฤฑlฤฑm Gรผneล, Sharma, Amit, Gibson, Adam, Gal, Yarin, Xing, Eric P., Mattmann, Chris, Parr, James
The development and deployment of machine learning (ML) systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end. The lack of diligence can lead to technical debt, scope creep and misaligned objectives, model misuse and failures, and expensive consequences. Engineering systems, on the other hand, follow well-defined processes and testing standards to streamline development for high-quality, reliable results. The extreme is spacecraft systems, where mission critical measures and robustness are ingrained in the development process. Drawing on experience in both spacecraft engineering and ML (from research through product across domain areas), we have developed a proven systems engineering approach for machine learning development and deployment. Our "Machine Learning Technology Readiness Levels" (MLTRL) framework defines a principled process to ensure robust, reliable, and responsible systems while being streamlined for ML workflows, including key distinctions from traditional software engineering. Even more, MLTRL defines a lingua franca for people across teams and organizations to work collaboratively on artificial intelligence and machine learning technologies. Here we describe the framework and elucidate it with several real world use-cases of developing ML methods from basic research through productization and deployment, in areas such as medical diagnostics, consumer computer vision, satellite imagery, and particle physics.
The Importance of Modeling Data Missingness in Algorithmic Fairness: A Causal Perspective
Goel, Naman, Amayuelas, Alfonso, Deshpande, Amit, Sharma, Amit
Training datasets for machine learning often have some form of missingness. For example, to learn a model for deciding whom to give a loan, the available training data includes individuals who were given a loan in the past, but not those who were not. This missingness, if ignored, nullifies any fairness guarantee of the training procedure when the model is deployed. Using causal graphs, we characterize the missingness mechanisms in different real-world scenarios. We show conditions under which various distributions, used in popular fairness algorithms, can or can not be recovered from the training data. Our theoretical results imply that many of these algorithms can not guarantee fairness in practice. Modeling missingness also helps to identify correct design principles for fair algorithms. For example, in multi-stage settings where decisions are made in multiple screening rounds, we use our framework to derive the minimal distributions required to design a fair algorithm. Our proposed algorithm decentralizes the decision-making process and still achieves similar performance to the optimal algorithm that requires centralization and non-recoverable distributions.
DoWhy: An End-to-End Library for Causal Inference
Sharma, Amit, Kiciman, Emre
In addition to efficient statistical estimators of a treatment's effect, successful application of causal inference requires specifying assumptions about the mechanisms underlying observed data and testing whether they are valid, and to what extent. However, most libraries for causal inference focus only on the task of providing powerful statistical estimators. We describe DoWhy, an open-source Python library that is built with causal assumptions as its first-class citizens, based on the formal framework of causal graphs to specify and test causal assumptions. DoWhy presents an API for the four steps common to any causal analysis---1) modeling the data using a causal graph and structural assumptions, 2) identifying whether the desired effect is estimable under the causal model, 3) estimating the effect using statistical estimators, and finally 4) refuting the obtained estimate through robustness checks and sensitivity analyses. In particular, DoWhy implements a number of robustness checks including placebo tests, bootstrap tests, and tests for unoberved confounding. DoWhy is an extensible library that supports interoperability with other implementations, such as EconML and CausalML for the the estimation step. The library is available at https://github.com/microsoft/dowhy