Shan, Ying
ViT-Lens-2: Gateway to Omni-modal Intelligence
Lei, Weixian, Ge, Yixiao, Yi, Kun, Zhang, Jianfeng, Gao, Difei, Sun, Dylan, Ge, Yuying, Shan, Ying, Shou, Mike Zheng
Aiming to advance AI agents, large foundation models significantly improve reasoning and instruction execution, yet the current focus on vision and language neglects the potential of perceiving diverse modalities in open-world environments. However, the success of data-driven vision and language models is costly or even infeasible to be reproduced for rare modalities. In this paper, we present ViT-Lens-2 that facilitates efficient omni-modal representation learning by perceiving novel modalities with a pretrained ViT and aligning them to a pre-defined space. Specifically, the modality-specific lens is tuned to project any-modal signals to an intermediate embedding space, which are then processed by a strong ViT with pre-trained visual knowledge. The encoded representations are optimized toward aligning with the modal-independent space, pre-defined by off-the-shelf foundation models. ViT-Lens-2 provides a unified solution for representation learning of increasing modalities with two appealing advantages: (i) Unlocking the great potential of pretrained ViTs to novel modalities effectively with efficient data regime; (ii) Enabling emergent downstream capabilities through modality alignment and shared ViT parameters. We tailor ViT-Lens-2 to learn representations for 3D point cloud, depth, audio, tactile and EEG, and set new state-of-the-art results across various understanding tasks, such as zero-shot classification. By seamlessly integrating ViT-Lens-2 into Multimodal Foundation Models, we enable Any-modality to Text and Image Generation in a zero-shot manner. Code and models are available at https://github.com/TencentARC/ViT-Lens.
Enhancing the vocal range of single-speaker singing voice synthesis with melody-unsupervised pre-training
Zhou, Shaohuan, Li, Xu, Wu, Zhiyong, Shan, Ying, Meng, Helen
The single-speaker singing voice synthesis (SVS) usually underperforms at pitch values that are out of the singer's vocal range or associated with limited training samples. Based on our previous work, this work proposes a melody-unsupervised multi-speaker pre-training method conducted on a multi-singer dataset to enhance the vocal range of the single-speaker, while not degrading the timbre similarity. This pre-training method can be deployed to a large-scale multi-singer dataset, which only contains audio-and-lyrics pairs without phonemic timing information and pitch annotation. Specifically, in the pre-training step, we design a phoneme predictor to produce the frame-level phoneme probability vectors as the phonemic timing information and a speaker encoder to model the timbre variations of different singers, and directly estimate the frame-level f0 values from the audio to provide the pitch information. These pre-trained model parameters are delivered into the fine-tuning step as prior knowledge to enhance the single speaker's vocal range. Moreover, this work also contributes to improving the sound quality and rhythm naturalness of the synthesized singing voices. It is the first to introduce a differentiable duration regulator to improve the rhythm naturalness of the synthesized voice, and a bi-directional flow model to improve the sound quality. Experimental results verify that the proposed SVS system outperforms the baseline on both sound quality and naturalness.
Music Understanding LLaMA: Advancing Text-to-Music Generation with Question Answering and Captioning
Liu, Shansong, Hussain, Atin Sakkeer, Sun, Chenshuo, Shan, Ying
Text-to-music generation (T2M-Gen) faces a major obstacle due to the scarcity of large-scale publicly available music datasets with natural language captions. To address this, we propose the Music Understanding LLaMA (MU-LLaMA), capable of answering music-related questions and generating captions for music files. Our model utilizes audio representations from a pretrained MERT model to extract music features. However, obtaining a suitable dataset for training the MU-LLaMA model remains challenging, as existing publicly accessible audio question answering datasets lack the necessary depth for open-ended music question answering. To fill this gap, we present a methodology for generating question-answer pairs from existing audio captioning datasets and introduce the MusicQA Dataset designed for answering open-ended music-related questions. The experiments demonstrate that the proposed MU-LLaMA model, trained on our designed MusicQA dataset, achieves outstanding performance in both music question answering and music caption generation across various metrics, outperforming current state-of-the-art (SOTA) models in both fields and offering a promising advancement in the T2M-Gen research field.
OmniZoomer: Learning to Move and Zoom in on Sphere at High-Resolution
Cao, Zidong, Ai, Hao, Cao, Yan-Pei, Shan, Ying, Qie, Xiaohu, Wang, Lin
Omnidirectional images (ODIs) have become increasingly popular, as their large field-of-view (FoV) can offer viewers the chance to freely choose the view directions in immersive environments such as virtual reality. The M\"obius transformation is typically employed to further provide the opportunity for movement and zoom on ODIs, but applying it to the image level often results in blurry effect and aliasing problem. In this paper, we propose a novel deep learning-based approach, called \textbf{OmniZoomer}, to incorporate the M\"obius transformation into the network for movement and zoom on ODIs. By learning various transformed feature maps under different conditions, the network is enhanced to handle the increasing edge curvatures, which alleviates the blurry effect. Moreover, to address the aliasing problem, we propose two key components. Firstly, to compensate for the lack of pixels for describing curves, we enhance the feature maps in the high-resolution (HR) space and calculate the transformed index map with a spatial index generation module. Secondly, considering that ODIs are inherently represented in the spherical space, we propose a spherical resampling module that combines the index map and HR feature maps to transform the feature maps for better spherical correlation. The transformed feature maps are decoded to output a zoomed ODI. Experiments show that our method can produce HR and high-quality ODIs with the flexibility to move and zoom in to the object of interest. Project page is available at http://vlislab22.github.io/OmniZoomer/.
SEED-Bench: Benchmarking Multimodal LLMs with Generative Comprehension
Li, Bohao, Wang, Rui, Wang, Guangzhi, Ge, Yuying, Ge, Yixiao, Shan, Ying
Based on powerful Large Language Models (LLMs), recent generative Multimodal Large Language Models (MLLMs) have gained prominence as a pivotal research area, exhibiting remarkable capability for both comprehension and generation. In this work, we address the evaluation of generative comprehension in MLLMs as a preliminary step towards a comprehensive assessment of generative models, by introducing a benchmark named SEED-Bench. SEED-Bench consists of 19K multiple choice questions with accurate human annotations (x 6 larger than existing benchmarks), which spans 12 evaluation dimensions including the comprehension of both the image and video modality. We develop an advanced pipeline for generating multiple-choice questions that target specific evaluation dimensions, integrating both automatic filtering and manual verification processes. Multiple-choice questions with groundtruth options derived from human annotation enables an objective and efficient assessment of model performance, eliminating the need for human or GPT intervention during evaluation. We further evaluate the performance of 18 models across all 12 dimensions, covering both the spatial and temporal understanding. By revealing the limitations of existing MLLMs through evaluation results, we aim for SEED-Bench to provide insights for motivating future research. We will launch and consistently maintain a leaderboard to provide a platform for the community to assess and investigate model capability.
A Confidence-based Partial Label Learning Model for Crowd-Annotated Named Entity Recognition
Xiong, Limao, Zhou, Jie, Zhu, Qunxi, Wang, Xiao, Wu, Yuanbin, Zhang, Qi, Gui, Tao, Huang, Xuanjing, Ma, Jin, Shan, Ying
Existing models for named entity recognition (NER) are mainly based on large-scale labeled datasets, which always obtain using crowdsourcing. However, it is hard to obtain a unified and correct label via majority voting from multiple annotators for NER due to the large labeling space and complexity of this task. To address this problem, we aim to utilize the original multi-annotator labels directly. Particularly, we propose a Confidence-based Partial Label Learning (CPLL) method to integrate the prior confidence (given by annotators) and posterior confidences (learned by models) for crowd-annotated NER. This model learns a token- and content-dependent confidence via an Expectation-Maximization (EM) algorithm by minimizing empirical risk. The true posterior estimator and confidence estimator perform iteratively to update the true posterior and confidence respectively. We conduct extensive experimental results on both real-world and synthetic datasets, which show that our model can improve performance effectively compared with strong baselines.
DeSRA: Detect and Delete the Artifacts of GAN-based Real-World Super-Resolution Models
Xie, Liangbin, Wang, Xintao, Chen, Xiangyu, Li, Gen, Shan, Ying, Zhou, Jiantao, Dong, Chao
Image super-resolution (SR) with generative adversarial networks (GAN) has achieved great success in restoring realistic details. However, it is notorious that GAN-based SR models will inevitably produce unpleasant and undesirable artifacts, especially in practical scenarios. Previous works typically suppress artifacts with an extra loss penalty in the training phase. They only work for in-distribution artifact types generated during training. When applied in real-world scenarios, we observe that those improved methods still generate obviously annoying artifacts during inference. In this paper, we analyze the cause and characteristics of the GAN artifacts produced in unseen test data without ground-truths. We then develop a novel method, namely, DeSRA, to Detect and then Delete those SR Artifacts in practice. Specifically, we propose to measure a relative local variance distance from MSE-SR results and GAN-SR results, and locate the problematic areas based on the above distance and semantic-aware thresholds. After detecting the artifact regions, we develop a finetune procedure to improve GAN-based SR models with a few samples, so that they can deal with similar types of artifacts in more unseen real data. Equipped with our DeSRA, we can successfully eliminate artifacts from inference and improve the ability of SR models to be applied in real-world scenarios. The code will be available at https://github.com/TencentARC/DeSRA.
On the Universal Adversarial Perturbations for Efficient Data-free Adversarial Detection
Gao, Songyang, Dou, Shihan, Zhang, Qi, Huang, Xuanjing, Ma, Jin, Shan, Ying
Detecting adversarial samples that are carefully crafted to fool the model is a critical step to socially-secure applications. However, existing adversarial detection methods require access to sufficient training data, which brings noteworthy concerns regarding privacy leakage and generalizability. In this work, we validate that the adversarial sample generated by attack algorithms is strongly related to a specific vector in the high-dimensional inputs. Such vectors, namely UAPs (Universal Adversarial Perturbations), can be calculated without original training data. Based on this discovery, we propose a data-agnostic adversarial detection framework, which induces different responses between normal and adversarial samples to UAPs. Experimental results show that our method achieves competitive detection performance on various text classification tasks, and maintains an equivalent time consumption to normal inference.
DSRM: Boost Textual Adversarial Training with Distribution Shift Risk Minimization
Gao, Songyang, Dou, Shihan, Liu, Yan, Wang, Xiao, Zhang, Qi, Wei, Zhongyu, Ma, Jin, Shan, Ying
Adversarial training is one of the best-performing methods in improving the robustness of deep language models. However, robust models come at the cost of high time consumption, as they require multi-step gradient ascents or word substitutions to obtain adversarial samples. In addition, these generated samples are deficient in grammatical quality and semantic consistency, which impairs the effectiveness of adversarial training. To address these problems, we introduce a novel, effective procedure for instead adversarial training with only clean data. Our procedure, distribution shift risk minimization (DSRM), estimates the adversarial loss by perturbing the input data's probability distribution rather than their embeddings. This formulation results in a robust model that minimizes the expected global loss under adversarial attacks. Our approach requires zero adversarial samples for training and reduces time consumption by up to 70\% compared to current best-performing adversarial training methods. Experiments demonstrate that DSRM considerably improves BERT's resistance to textual adversarial attacks and achieves state-of-the-art robust accuracy on various benchmarks.
Sticker820K: Empowering Interactive Retrieval with Stickers
Zhao, Sijie, Ge, Yixiao, Qi, Zhongang, Song, Lin, Ding, Xiaohan, Xie, Zehua, Shan, Ying
Stickers have become a ubiquitous part of modern-day communication, conveying complex emotions through visual imagery. To facilitate the development of more powerful algorithms for analyzing stickers, we propose a large-scale Chinese sticker dataset, namely Sticker820K, which consists of 820k image-text pairs. Each sticker has rich and high-quality textual annotations, including descriptions, optical characters, emotional labels, and style classifications. Although vision-language tasks in the domain of natural images have been well studied, directly applying the those models, such as CLIP, to sticker data is not an optimal solution due to the discrepant nature between natural and emotive image data. Therefore, we propose StickerCLIP as a benchmark model on the Sticker820K dataset. For the text-to-image retrieval task, our StickerCLIP demonstrates strong superiority over the CLIP, which achieves an absolute gain of 66.0\% in mean recall on the Sticker820K test set. Additionally, we endeavor to extend the recently popularized LLM by means of prompt tuning, integrating its ability for sticker retrieval and allowing users to retrieve stickers through instructions. We validate the feasibility of this method, demonstrating the immense potential of prompt tuning in expanding LLM abilities while not affecting the quality of upstream tasks.